Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of abbreviations and symbols</td>
<td>x</td>
</tr>
<tr>
<td>PREFACE</td>
<td>xii</td>
</tr>
<tr>
<td>Chapter 1. Introduction: Metal complexes bearing N, O or S</td>
<td>1-30</td>
</tr>
<tr>
<td>binding ligands; Synthesis, characterization and properties</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Self-assembly</td>
<td>1</td>
</tr>
<tr>
<td>1.2. 1,1-dithio ligands</td>
<td>3</td>
</tr>
<tr>
<td>1.2.1. Preparation of the dithiocarbamate ligand</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2. Properties of dithiocarbamates</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3. Binding Modes</td>
<td>7</td>
</tr>
<tr>
<td>1.2.4. Structural features of dithiocarbamate complexes</td>
<td>8</td>
</tr>
<tr>
<td>1.2.5. Potential application of dithiocarbamates and their complexes</td>
<td>10</td>
</tr>
<tr>
<td>1.2.6. Ferrocene functionalized transition metal dithiocarbamate complexes</td>
<td>12</td>
</tr>
<tr>
<td>1.3. N, O-Schiff Bases</td>
<td>16</td>
</tr>
<tr>
<td>1.3.1. Metal Complexes of N, O-Schiff bases</td>
<td>17</td>
</tr>
<tr>
<td>1.4. Objectives of the present work</td>
<td>22</td>
</tr>
<tr>
<td>1.5. References</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 2. Synthesis and characterization of ferrocenyl bearing</td>
<td>31-79</td>
</tr>
<tr>
<td>transition metal dithiocarbamate complexes $[M(L^{S,S}$-S_{2}CN(CH${2}$R)CH${2}$Fc)$_{n}$]: Thermogravimetric, cyclic voltammetric, fluorescence and antimicrobial study</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>31</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>32</td>
</tr>
<tr>
<td>2.2. Results and Discussion</td>
<td>34</td>
</tr>
<tr>
<td>2.2.1. Synthesis and characterization</td>
<td>34</td>
</tr>
<tr>
<td>2.2.2. UV-Visible absorption and magnetic moment study</td>
<td>36</td>
</tr>
</tbody>
</table>
2.2.3. Fluorescence emission study 39
2.2.4. Single Crystal X-ray Crystallography 40
2.2.5. Crystal structure determination and packing patterns 40
2.2.6. Electrochemical study 44
2.2.7. Thermogravimetric Analysis 47
2.2.8. Biological study 49
2.3. Conclusion 52
2.4. Experimental section 53
2.4.1. Materials and measurements 53
2.4.2. Synthesis of N-methyl-(1-naphthyl)-N-methylferrocenyl amine (L1) 54
2.4.3. Synthesis of N-methyl-(3-pyridyl)-N-methylferrocenyl amine (L2-L3) 54
2.4.4. Synthesis of [M{κ2S,S-S2CN(CH2R)CH2Fc}n] {R = 1-naphthyl, 3-pyridyl or 2-furyl (n = 2 or 3} (1-9) 55
2.5. References 57
2.6. Spectra and plots 62
2.6.1. IR spectra 62
2.6.2. ESI MS spectra 65
2.6.3. NMR spectra 69
2.6.4. Thermogravimetric Analysis 78

Chapter 3A. 3-Aminocoumarin based mononuclear complexes [M(1,1-dithiolato)n] {Mn(II), Co(III), Zn(II) and Cd(II)}: Spectral characterization, fluorescence, optical and thermogravimetric study

Abstract 80
3A.1 Introduction 81
3A.2. Results and Discussion 82
3A.2.1. Synthesis and characterization 82
3A.2.2. IR Spectral study 83
3A.2.3. NMR spectral study 84
3A.2.4. Electronic absorption spectral and magnetic 85
moment study
3A.2.5. Fluorescence spectral study 87
3A.2.6. Geometry optimization of complex 1 88
3A.2.7. Cyclic voltammetric study 90
3A.2.8. Thermogravimetric study 92
3A.2.9. Optical band gap 95
3A.3. Conclusion 96
3A.4. Experimental section 97
3A.4.1. Materials and measurement 97
3A.4.2. Synthesis of monometallic [M(1,1-dithiolato)_n] (1–4) 98
3A.5. References 99
3A.6. Spectra 103
3A.6.1. IR spectra 103
3A.6.2. NMR spectra 104
3A.6.3. ESI MS spectra 108
3A.6.4. Fluorescence spectra 110
3A.6.5. Geometrical optimization of complex 1 112

Chapter 3B. [M\{S_S,S_S_S_C-piperazine-C_2H_4N=C(R)\}_n] \{Co(III), Ni(II), Cu(II) or Zn(II)} complexes bearing pendant Schiff base moieties: Spectral characterization, fluorescence, cyclic voltammetric and TGA/DTA study

Abstract 114

3B.1. Introduction 115
3B.2. Results and Discussion 116
3B.2.1. Synthesis and characterization 116
3B.2.2. IR spectral study 118
3B.2.3. NMR spectral study 118
3B.2.4. UV-visible absorption and magnetic moment study 119
3B.2.5. Fluorescence emission spectral study 121
3B.2.6. Thermogravimetric study 123
3B.2.7. Cyclic voltammetry 125
3B.3. Conclusion 128
3B.4. Experimental section 128
3B.4.1. Materials and measurements 128
3B.4.2. Synthesis 129
3B.4.2.1. Synthesis of the N-[phenylmethyldene]-2-piperazin-1-ylenethanamine, L¹ 129
3b.4.2.2. Synthesis of the N-[naphthylmethyldene]-2-piperazin-1-ylenethanamine, L² 130
3B.4.2.3. General synthesis of mononuclear [M{κ²S,S-S₂C-piperazine-C₂H₄N=C(R)}ₙ] Complexes, 1-8 130
3B.5. References 133
3B.6. Spectra 136
3B.6.1. IR Spectra 136
3B.6.2. NMR spectra 138
3B.6.3. ESI MS spectra 144

Chapter 4A. Synthesis and characterization of functionalized 2° amines 2-(alkylamino)-3-chloro-1,4-naphthoquinones: Effect of N-substituents on crystal packings, fluorescence, redox and anti-microbial properties 145-193

Abstract 145
4A.1. Introduction 146
4A.2. Results and Discussion 148
4A.2.1. Synthesis and characterization 148
4A.2.2. Structural descriptions 152
4A.2.2.1. X-ray structure of 2-(cyclohexylamino)-3-chloro-1,4-naphthoquinone [C₁₆H₁₆ClNO₂] (1) 153
4A.2.2.2. X-ray structure of 2-(benzylamino)-3-chloro-1,4-naphthoquinone [C₁₇H₁₂ClNO₂] (2) 155
4A.2.2.3. X-ray structure of 2-(furfurylamino)-3-chloro-1,4-naphthoquinone[C₁₅H₁₀ClNO₃] (3) 157
4A.2.2.4. X-ray structure of 2-(2-pyridylmethylamino)-3-chloro-1,4-naphthoquinone [C₁₆H₁₃ClN₃O₂] (4) 160
4A.2.2.5. X-ray structure of 2-(benzylamino)-1,4-chloro-3-pyridyl-1,4-naphthoquinone [C₁₇H₁₂ClN₃O₂] (5) 162
Chapter 4A. Synthesis, UV-visible absorption and fluorescence properties, Thermogravimetric studies for 1-7, Cyclic Voltammetric Study, Biological evaluation, Conclusion. 4A.4. Experimental, Material and physical measurements, Synthesis of compounds 1-7, General procedure for synthesis of 2-(alkylamino)-3-chloro-1,4-naphthoquinones (1-6), General procedure for synthesis of 2-(benzylamino)-1,4-naphthoquinone (7), X-ray crystallography and data collection, References.

Chapter 4B. Synthesis, electrochemical, fluorescence and antimicrobial studies of 2-chloro-3-amino-1,4-naphthoquinone functionalized mononuclear transition metal dithiocarbamate complexes. Abstract.

194-220
4B.2.6. Cyclic voltammetric study 203
4B.2.7. Biological evaluation 205
4B.2.8. TG/DTA study 208
4B.3. Conclusion 209
4B.4. Experimental section 210
4B.4.1. Materials and measurements 210
4B.4.2. Synthesis of 2-chloro-3-{2-(piperazinyl)ethyl}-amino-1, 4-naphthoquinone (L) 210
4B.4.3. Synthesis of triethylammonium dtc salt of 2-chloro-3-{2-(piperazinyl)ethyl}-amino-1, 4-naphthoquinone 211
4B.4.4. Synthesis of metal complexes 1-5 211
4B.5. References 213
4B.6. Spectra 216
4B.6.1. NMR spectra 216
4B.6.2. ESI MS spectra 219
4B.6.3. TG/DTA 220
Chapter 5. Synthesis, characterization, optical, thermogravimetric and single crystal x-ray diffraction studies of 3-aminocoumarin based κ^3N,O,O-tridentate/κ^2N,O-bidentate Schiff base transition metal complexes 221-257
Abstract 221
5.1. Introduction 222
5.2. Result and discussion 224
5.2.1. Synthesis and characterization 224
5.2.2. IR spectral study 225
5.2.3. NMR spectral study 227
5.2.4. Single Crystal X-ray diffraction study 227
5.2.5. UV-visible spectral and magnetic moment study 231
5.2.6. Fluorescence spectral study 234
5.2.7. ESR spectral study 237
5.2.8. Optical band gap measurement 238
5.2.9. MALDI-TOF MS 240
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.10</td>
<td>Thermogravimetric study</td>
<td>243</td>
</tr>
<tr>
<td>5.2.11.</td>
<td>Cyclic Voltammetric Study</td>
<td>246</td>
</tr>
<tr>
<td>5.3</td>
<td>Conclusion</td>
<td>248</td>
</tr>
<tr>
<td>5.4.</td>
<td>Experimental section</td>
<td>248</td>
</tr>
<tr>
<td>5.4.1.</td>
<td>Materials and measurements</td>
<td>248</td>
</tr>
<tr>
<td>5.4.2.</td>
<td>Synthesis of L^1 and L^2</td>
<td>249</td>
</tr>
<tr>
<td>5.4.3.</td>
<td>Synthesis of mononuclear transition metal complexes 1-8</td>
<td>250</td>
</tr>
<tr>
<td>5.5.</td>
<td>References</td>
<td>252</td>
</tr>
<tr>
<td>5.5.1.</td>
<td>Spectra</td>
<td>254</td>
</tr>
<tr>
<td>5.5.2.</td>
<td>NMR spectra</td>
<td>254</td>
</tr>
</tbody>
</table>

List of Publications | 258
Papers presented in conferences/ symposia | 266 |