CONTENTS

CHAPTER I

1. GENERAL INTRODUCTION
 1.1 Environmental pollution
 1.2 Heavy metal pollution
 1.2.1 Mercury
 1.2.2 Lead
 1.3 Toxicity of Hg and Pb
 1.4 Heavy metal remediation technique
 1.5 General aspects of phytoremediation
 2.6 Antioxidant defense mechanism
 2.6.1 Antioxidant enzymes
 2.6.1.1 Superoxide dismutase (SOD)
 2.6.1.2 Catalase (CAT)
 2.6.1.3 Peroxidase (POX)
 1.7 Phytotoxicity of mercury and lead
 1.8 Lead metal nanoparticle synthesis from heavy metal treated plants
 1.9 Plant description
 Sesbania grandiflora
 Eichhornia crassipes
 1.10 Importance of the study
 1.11 Aim and objectives of the present investigation
 Objectives

CHAPTER II

2. Bioaccumulation of heavy metals and physiological changes in mercury and lead treated plants
 2.1 Introduction
 2.2 Materials and methods
 2.2.1 Plant culture
 2.2.1.1 Sesbania grandiflora
 2.2.1.2 Eichhornia crassipes
 2.2.2 Heavy metal treatment
 2.2.2.1 Preparation of Hoagland’s nutrient solution
 2.2.2.2 Growth conditions
 2.2.2.3 Heavy metal treatment
 2.2.3 Physiological study
 2.2.3.1 Growth inhibitory rate (GIR)
 2.2.3.2 Biomass and relative water content (RWC)
2.2.3.3 Photosynthetic activity
2.2.3.4 Scanning electron microscopic (SEM) observation
2.2.4 Heavy metal analysis

2.3 Results
2.3.1 Effect of Hg and Pb on physiological parameters
2.3.1.1 Effect of Hg on plant growth, biomass and RWC
2.3.1.2 Effect of Pb on plant growth, biomass and RWC
2.3.2 Photosynthetic pigments content
2.3.2.1 Effect of Hg on photosynthetic pigments content
2.3.2.2 Effect of Pb on photosynthetic pigments content
2.3.3 Scanning electron microscopy and EDX spectroscopy study
2.3.3.1 Localization of Hg
2.3.3.2 Localization of Pb
2.3.4 Accumulation of Hg and Pb
2.3.4.1 Accumulation of Hg
2.3.4.2 Accumulation of Pb

2.4 Discussion
2.4.1 Physiological parameters
2.4.2 Photosynthetic pigment content
2.4.3 Scanning electron microscopy and EDX spectroscopy study
2.4.4 Heavy metal accumulation

2.5 Summary

CHAPTER III
3. Effect of heavy metal stress on enzymatic and non-enzymatic antioxidants defense mechanism in mercury and lead treated plants
3.1 Introduction
3.2 Materials and method
3.2.1 Estimation of total soluble protein content
3.2.2 SDS-PAGE
3.2.3 Measurement of MDA contents
3.2.4 Measurement of antioxidative enzyme activity
3.2.4.1 Extraction of enzymes
3.2.4.2 Superoxide dismutase (EC 1.15.1.1) assay
3.2.4.3 Catalase (CAT, EC 1.11.1.6) assay
3.2.4.4 Ascorbate Peroxidase (APX, EC 1.11.1.11) assay
3.2.4.5 Peroxidase (POX, EC 1.11.1.7) assay
3.2.5 Native-PAGE
3.2.5.1 Superoxide dismutase
3.2.5.2 Catalase
3.2.5.3 Peroxidase

3.3 Results
3.3.1 Total soluble protein content
3.3.1.1 Effect of Hg on total soluble protein content
3.3.1.2 Effect of Pb on total soluble protein content
3.3.2 SDS-PAGE for leaf protein
3.3.3 MDA content
3.3.3.1 Effect of Hg on MDA content
3.3.3.2 Effect of Pb on MDA content
3.3.4 Antioxidative enzyme activity
3.3.4.1 Effect of Hg on antioxidative enzyme activity
3.3.4.2 Effect of Pb on antioxidative enzyme activity
3.3.5 Native-PAGE for Pb treated S. gradiflora leaf samples

3.4 Discussion
3.4.1 Total soluble protein content
3.4.2 SDS-PAGE
3.4.3 MDA content
3.4.4 Antioxidative enzyme activity
3.4.5 Native-PAGE

3.5 Summary

CHAPTER IV
4. Effect of heavy metal stress on DNA damage and genomic template stability by RAPD analysis
4.1 Introduction
4.2 Materials and methods
4.2.1 Genomic DNA isolation
4.2.2 DNA concentrations
4.2.3 RAPD-PCR analysis
4.2.4 Electrophoretic analysis of amplification profiles
4.2.5 Estimation of genomic template stability
4.3 Results
4.3.1 Effect of Hg on RAPD profiles
4.3.2 Effect of Pb on RAPD profiles
4.4 Discussion
4.5 Summary
CHAPTER V
5. Synthesis and characterization of lead metal nanoparticles from heavy metal hyperaccumulator plants

5.1 Introduction

5.2 Materials and method
5.2.1 Plant culture and growth conditions
5.2.2 Heavy metal treatment and nanoparticle synthesis
5.2.3 Characterization of lead nanoparticles

5.3 Results
5.3.1 Fourier Transform Infra Red Spectroscopy
5.3.2 X-ray Diffraction analysis
5.3.3 SEM and EDX analysis

5.4 Discussion

5.5 Summary

CHAPTER VI
6. Summary and conclusion

References

List of publications