12. REFERENCES

 Prog. Lipid Res. 42: 405-422.
 14(1):66–79.
 Med., 156(9):925–35.
 evidence- Trends in biochemical sciences. 29:529-545.
 the controversy. Diabetes Metab. 29, 579 -585.
 Aging. 2: 219-236.
16. Lu J. Lin, P H. Yao, Q and Chen, C. (2010). Chemical and molecular mechanisms of

50. Duan, Wengui. Wei, Youjie. Cen, Bo. Li, Guishan and Xu, Xuetang. (2013). Reported Method for synthesis of Acrylpimamic acid-based Bis(thiadiazole) with Acrylpimamic acid as starting material. CN 102875487.

73. Coller, Barry S. Thomas, Craig and Filizola, Marta. (2012). Described Preparation of piperazinyl substituted thidiazolopyrimidinones for inhibiting or reducing platelet aggregation and adhesion. WO 2012009688.

76. Bansode, Soujanya and Kamble, Ravindra. (2012). Developed Synthesis of novel 2-(3'-aryl-sydnon-4'-ylidene)-5'-substituted-[1,3,4]-thiadiazolamines and [1,3,4]-thiadiazol-2'-yl-3-oxo-[1,2,4]-triazoles as antimicrobial agents. *Medicinal Chemistry Research*, 21(6):867-873.

Co(II), Ni(II), Cu(II), Zn(II) complexes with phenyl and ethyl derivatives of 2-amino-

159. Lu, Shuiming and Xiong, Yerong. (2000). Reported Synthesis of new organophosphorus

synthesis and antilipidemic testing of some heterocyclic derivatives of hexadecyl and

161. Lu, Shui-Ming and Chen, Ru-Yu. (2000). Repoted facile synthesis of α-
aminophosphonate derivatives of 1,3,4-oxadiazole and 1,3,4-thiadiazole. *Organic

developed Synthesis and anticonvulsant activity of 5-aryl-1,3,4-thiadiazole derivatives.
Pharmacy and Pharmacology Communications, 6(1): 31-33.

reported Synthesis and antimicrobial activity of novel 3-thiazolyl/imidazo[2,1-b]-1,3,4-

(1999). Reported preparation of 1,3,4-thiadiazole derivatives as KYN-OH inhibitors. WO
9928309.

compound 4-phenyl-5-(4-nitrocinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride.
Anti-Cancer Drugs, 8: 88-91.

167. Khan, Mukhtar Hussain and Nizamuddin. (1997). Synthesised 5-aryl-2-[spiro(1,3-
dithiolane)-2,4′-(3″-chloro-2″-azetidinon)-1″-yl]-1,3,4-oxa(thia)diazoles and 5-aryl-2-
[spiro(1,3-dithiolane) -2,2″-(4″-thiazolicinon) -3″-yl]-1,3,4-oxa(thia)diazoles as antimiicrobial agents. *Indian Journal of Chemistry, 36B*(7): 625-629.

168. Iakenaka, Keiko and Isuji, Tadakazu. (1996). Reported synthesis of
[1,3,4]thiazidazo[3,2-a]pyrimidines in the presence of formic acid. *Journal of

Polar molecular surface as a dominating determinant for oral absorption and brain
caco-2 cell permeability of structurally diverse small molecular weight compounds.
Computational Screening Models for the Prediction of Intestinal Drug Absorption. J.
(1999). MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability
for Drugs Inducing the Long QT Syndrome: Insights from a CoMFA Study of HERG K+
235. Friesner, R A. Banks, J L and Murphy, R B. (2004). Glide: a new approach for rapid,
accurate docking and scoring. Method and assessment of docking accuracy. Journal of
accurate docking and scoring. Enrichment factors in database screening. Journal of
238. Ramachandran G N and Sasisekharan V. (1968). Conformation of polypeptides and
The organization and contribution of structurally conserved hot spot residues. J. Mol.
240. Michelow, I C. Dong, M. Mungall, B A. Yantosca, L M. Lear, C. Ji, X. Karpel, M.
lectin chimeric molecule with enhanced activity against ebola virus. J. Biol. Chem.

352. Wilson, I.B and Quan, C. Acetylcholinesterase studies on molecular complementariness. *Arch. Biochem. Biophys.*, 1958, 73, 131-143.

active center determinants of substrate specificity. Identification of residues constituting
the anionic site, the hydrophobic site, and the acyl pocket. J. Biol. Chem., 1993, 268,
17083-17095.

360. Taylor, P and Lappi, S. Interaction of fluorescence probes with acetylcholinesterase. Site

site residues and amino acids interacting with Ω loop on substrate activation of

acetylcholinesterase and butyrylcholinesterase. Brain Res. 98:139-146.

Jeong. (2014). Cudarflavone B Provides Neuroprotection againstGlutamate-Induced
Mouse Hippocampal HT22 Cell Damage through the Nrf2 and PI3K/Akt Signaling

and Yung Hyun, Choi. (2013). Anthocyanins down regulate lipopolysaccharide-induced
inflammatory responses in BV2 microglial cells by suppressing the nf-κb and akt /mapks

unfolded protein response and cell death pathway in Alzheimer's disease, but not in aged

during neuronal induction of rat bone marrow stromal cells and mouse embryonic stem
cells. Exp Mol Med, 41:440-52