Contents

1. Introduction 1-6

2. Review of Literature 7-25

2.1. Pesticides 7-14

2.1.1. Chlorpyrifos (CPF) 7

2.1.2. Physiochemical properties of Chlorpyrifos 8

2.1.3. Effect of organophosphate on reproductive system 8

2.1.4. Reproductive toxicity of Chlorpyrifos 8-12

2.1.5. Male Reproductive toxicity of Chlorpyrifos 12-14

2.2. Emblica officinalis (Geartn) 15-25

2.2.1. Regional name of Emblica officinalis 15-16

2.2.2. Essential part of Emblica officinalis 16

2.2.3. Botanical description 16

2.2.4. Geographical distribution 16

2.2.5. Traditional use 16

2.2.6. Phytochemical constituents and active ingredients 17

2.2.7. Pharmacology and clinical studies 18

2.2.8. Application of Emblica officinalis 18-21

2.2.8.1. Uses of Emblica Officinalis in Diabetes 19

2.2.8.2. Activity of Emblica Officinalis in Liver 20

2.2.8.3. Emblica Officinalis and its Anti-ulcer Activities 20

2.2.8.4. Roles of Emblica Officinalis in Reducing Cholesterol and Dyslipidemia 20

2.2.9. Antioxidant Activities of Emblica officinalis 21-24

2.2.10. Antipyretic and Analgesic Activities of Emblica Officinalis 24

2.2.11. Memory Enhancing Effects of Emblica Officinalis 24

2.2.12. Emblica Officinalis in Reproduction 24-25

3. Materials and methods 26-37

3.1. Animals and Chemicals 26

3.1.1. Chemical and Physical properties of Chlorpyrifos (CPF) 26

3.1.2. Systematic position of Emblica officinalis (Amla) 26

3.2. Selection of Dose 27

3.3. Animal treatment Schedule 27

3.4. Measurement of body and organs weight 28

3.5. Testicular sperm count 28

3.6. Epididymal sperm morphology 29

3.7. Sperm motility analysis 29

3.8. Sperm density 29

3.9. Quantitative Study of protein (Testis, Seminal vesicle, Epididymis) 29-31

3.10. ENZYMES 31-32

3.10.1. Preparation of tissue supernatant 31

3.10.1.1. Estimation of acid phosphatases enzyme 31

3.10.1.2. Estimation of alkaline phosphatases enzyme 31
3.11. Estimation of serum uric acid level 32
3.12. Estimation for heavy metals deposition 33
3.14 Comet assay 35-37
3.15. Histopathological Study 37

4. Results. 38-97

4.1. Body weight change after 15 days treatment 38
4.2. Alteration of organ weight after 15 days treatment 39-41
 4.2.1 Testis
 4.2.2 Seminal vesicle
 4.2.3 Epididymis

4.3. Sperm Count (million/ml) after 15 days exposure 42
4.4. Sperm motility analysis (%) after 15 days exposure 43
4.5. Sperm morphology (%) after 15 days 43-45
4.6. Sperm Density after 15 days treatment 45-46

4.7. Biochemical parameters after 15 days treatment 46-49
 4.7.1. Quantitative estimation of total protein after 15 days treatment from
 different reproductive organs 46-48
 4.7.1.1 Testis
 4.7.1.2 Epididymis
 4.7.1.3 Seminal vesicle
 4.7.2. Uric Acid level after 15 days treatment 49

4.8. Enzymatic study after 15 days treatment 49-54
 4.8.1. Activities of Acid phosphatase after 15 days treatment 49-51
 4.8.1.1 Testis
 4.8.1.2. Seminal vesicle
 4.8.1.3. Epididymis
 4.8.2. Activities of Alkaline phosphatase after 15 days treatment 51-54
 4.8.2.1. Testis
 4.8.2.2. Seminal vesicle
 4.8.3. Epididymis

4.9. Hormonal assay (RIA) after 15 days treatment 54-55
 4.9.1. Testosterone level in testis after 15 days treatment 54-55
 4.9.2. Testosterone level in serum after 15 days treatment 55

4.10. Comet assay after 15 days treatment 55-56

4.11. Heavy metals deposition in Testis, Seminal vesicle and Epididymis, after 15
 days treatment of control and experimental rats. 56-60
 4.11.1. Testis
 4.11.2. Seminal vesicle
 4.11.3. Epididymis

4.12. Histopathological observation in testis, Seminal vesicle and Epididymis, after
 15 days treatment of control and experimental rats. 60-66
 4.12.1. Testis
 4.12.2. Seminal vesicle
 4.12.3. Epididymis
4.13. Body weight after 30 days of exposure 67-68
4.14. Alteration of organ weight after 30 days exposure 68-70
 4.14.1. Testis
 4.14.2. Seminal vesicle
 4.14.3. Epididymis

4.15. Sperm Count (million/ml) after 30 days exposure 70-71
4.16. Sperm motility analysis (%) after 30 days of exposure 72
4.17. Sperm morphology (%) after 30 days of exposure 73-74
4.18. Sperm Density after 30 days treatment 74-75

4.19. Biochemical parameters after 30 days treatment 75-78
 4.19.1. Quantitative estimation of total protein after 30 days treatment 75-77
 4.19.1.1 Testis
 4.19.1.2 Epididymis
 4.19.1.3 Seminal vesicle
 4.19.2. Uric Acid level after 30 days treatment 77-78

4.20. Enzymatic study after 30 days treatment 78-82
 4.20.1. Activities of Acid phosphatase after 30 days 77-80
 4.20.1.1 Testis
 4.20.1.2 Epididymis
 4.20.1.3 Seminal vesicle
 4.20.2. Activities of Alkaline phosphatase after 30 days of exposure 80-82
 4.20.2.1 Testis
 4.20.2.2 Seminal vesicle
 4.20.2.3 Epididymis

4.21. Hormonal assay (RIA) after 30 days treatment 82-84
 4.21.1. Testosterone level in testis after 30 days treatment 82
 4.21.2. Testosterone level in serum after 30 days treatment 82-84

4.22. Comet assay after 30 days treatment 84

4.23. Heavy metals deposition in Testis, Seminal vesicle and Epididymis, after 30 days treatment of control and experimental rats. 85-87
 4.23.1. Testis
 4.23.2. Seminal vesicle
 4.23.3. Epididymis

4.24. Histopathological observation in testis, Seminal vesicle and Epididymis, after 30 days treatment of control and experimental rats. 87-95
 4.24.1. Testis
 4.24.2. Seminal Vesicle
 4.24.3. Epididymis

5. Discussion 96-110
6. Summary 111-113
7. Conclusion 114
8. References 115-134

9. Thesis Related Publication
 9.1. Emblica Officinalis Garten fruits extract ameliorates reproductive injury and oxidative testicular toxicity induced by chlorpyrifos in male rats
 9.2. Protective effect of emblica officinalis on chlorpyrifos (an organophosphate insecticide) induced male reproductive system in rats.

10. Other than Publication
10.1. *Oryzias melastigma* -- an effective substitute for exotic larvicidal fishes: enhancement of its reproductive potential by supplementary feeding
10.2. Ornamental Fishes of Coastal West Bengal, India —Prospects of Conservation and Involvement of Local Fishermen
10.3. Reproductive Potential of *Oryzias melastigma* Under Supplementary Feeding
10.4. Efficacy of *Oryzias melastigma* (McClelland) in Mosquito Vector Control