Chapter 4

On $*$-bimultipliers, generalized $*$-biderivations in rings with involution

4.1 Introduction

An additive mapping $x \mapsto x^*$ on a ring R is said to be an involution if $(xy)^* = y^*x^*$ and $(x^*)^* = x^*$ holds for all $x, y \in R$. If R is an algebra we assume additionally that $(\alpha x)^* = \overline{\alpha} x^*$ for all $x \in R$ and α is in some field F. A ring (algebra) which is endowed with an involution is called a ring (algebra) with involution or $*$-ring ($*$-algebra). A biadditive (i.e., additive in both arguments) mapping $B : R \times R \to R$ is called a biderivation on R if it is a derivation in each argument i.e., for every $x \in R$, the maps

$y \mapsto B(x, y)$ and $y \mapsto B(y, x)$ are derivations of R into R (see [165], where biderivations satisfying some special properties are studied). We call a symmetric biadditive mapping $B : R \times R \to R$ a symmetric biderivation on R if $B(xy, z) = B(x, z)y + xB(y, z)$ holds for all $x, y, z \in R$. Typical examples are mappings of the forms $(x, y) \mapsto c[x, y]$, where c is an element of the center of R. The notion of symmetric biderivation arises naturally in the study of additive commuting mappings, since every commuting additive mapping $f : R \to R$ gives rise to a symmetric biderivation of R. Namely, the linearization of the relation $[f(x), x] = 0$ for all $x \in R$ yields that $[f(x), y] = [x, f(y)]$ for all $x, y \in R$. Therefore, we note that the mapping $(x, y) \mapsto [f(x), y]$ is a symmetric biderivation. The concept of symmetric biderivation was introduced by G. Maksa [133] (see also [134], where an example can be found). It was shown in [134] and [166] that symmetric biderivations are related to general solutions of some functional equations.

Further, Brešar et al. [76] established that every biderivation B of a noncommutative prime ring R is of the form $B(x, y) = \lambda [x, y]$ for all $x, y \in R$ and for some $\lambda \in C$. the

The contents of this chapter have been published in Kyungpook Math. J., 51 (2011), 301–309.
extended centroid of R. Some more results related to symmetric biadditive mappings on prime and semiprime rings can be looked in [61], [66], [143], [144] and [165].

The purpose of this chapter is to study symmetric biadditive mappings when the ring R is equipped with an involution. Section 4.2 is devoted to the study of left (resp. right) $*$-bimultipliers in the setting of semi(prime) $*$-rings. In this section, we establish that every left (right) $*$-bimultiplier on a semiprime $*$-ring R maps $R \times R$ into $Z(R)$. Also, we proved that if a prime $*$-ring admits a nonzero left (resp. right) $*$-bimultiplier, then R is commutative.

Section 4.3 deals with the study of symmetric generalized $*$-biderivations (resp. symmetric generalized reverse $*$-biderivations) on semi(prime) $*$-rings and prove that if a semiprime $*$-ring admits a symmetric generalized $*$-biderivation (resp. symmetric generalized reverse $*$-biderivation) G with associated a nonzero symmetric $*$-biderivation (resp. symmetric reverse $*$-biderivation) B, then G maps $R \times R$ into $Z(R)$. The prime version of these results have also been given.

In the last section, we establish corresponding results in the setting of C^*-algebras.

4.2 Left (resp. right) $*$-bimultipliers

Following [178], an additive mapping $T : R \to R$ is said to be a left (resp. right) centralizer (or multiplier) if $T(xy) = T(x)y$ (resp. $T(xy) = xT(y)$) holds for all $x, y \in R$. According [143, 144], a biadditive mapping $B : R \times R \to R$ is called a left (resp. right) bimultiplier if $B(xy, z) = B(x, z)y$ (resp. $B(xy, z) = xB(y, z)$) holds for all $x, y, z \in R$. Inspired by the above mentioned concepts in rings, the notion of $*$-bimultiplier can be introduce as follows:

Definition 4.2.1. Let R be a $*$-ring. A symmetric biadditive mapping $M : R \times R \to R$ is said to be a symmetric left $*$-bimultiplier if $M(xy, z) = M(x, z)y^*$ holds for all $x, y, z \in R$.

Definition 4.2.2. Let R be a $*$-ring. A symmetric biadditive mapping $M : R \times R \to R$ is said to be a symmetric right $*$-bimultiplier if $M(xy, z) = x^*M(y, z)$ holds for all $x, y, z \in R$.

If M is both symmetric left as well as right $*$-bimultiplier, then M is a symmetric $*$-bimultiplier. In the present section, we prove some results related to the left
*-bimultipliers in the setting of prime and semiprime rings with involution. We begin our discussion with the following theorem:

Theorem 4.2.1. Let R be a semiprime $*$-ring. If $M : R \times R \to R$ is a biaadditive mapping such that $M(xy, z) = M(x, z)y^*$ for all $x, y, z \in R$, then M maps $R \times R$ into $\mathbb{Z}(R)$.

Proof. By the hypothesis, we have

$$M(xy, z) = M(x, z)y^* \text{ for all } x, y, z \in R. \quad (4.2.1)$$

Replacing y by yw in (4.2.1), one hand we obtain

$$M(xyw, z) = M(x(yw), z) = M(x, z)y^*w^* \text{ for all } w, x, y, z \in R. \quad (4.2.2)$$

On the other hand, we have

$$M(xyw, z) = M((xy)w, z) = M(x, z)y^*w^* \text{ for all } w, x, y, z \in R. \quad (4.2.3)$$

Subtracting (4.2.2) from (4.2.3), we obtain

$$M(x, z)[y^*, w^*] = 0 \text{ for all } w, x, y, z \in R. \quad (4.2.4)$$

Substituting y^* for y and w^* for w in (4.2.4), we arrive at

$$M(x, z)[y, w] = 0 \text{ for all } w, x, y, z \in R. \quad (4.2.5)$$

Replacing y by $yM(x, z)$ in the above expression we find that

$$M(x, z)[y, w]M(x, z) + M(x, z)y[M(x, z), w] = 0 \text{ for all } w, x, y, z \in R.$$ \hspace{1cm} \quad (4.2.6)$$

Application of relation (4.2.5) forces that

$$M(x, z)y[M(x, z), w] = 0 \text{ for all } w, x, y, z \in R. \quad (4.2.6)$$

Multiplying by w to (4.2.6) from left yields that

$$wM(x, z)y[M(x, z), w] = 0 \text{ for all } w, x, y, z \in R. \quad (4.2.7)$$
Now putting \(wy \) for \(y \) in (4.2.6), we get

\[
M(x, z)wy[M(x, z), w] = 0 \text{ for all } w, x, y, z \in R. \tag{4.2.8}
\]

Combining (4.2.7) with (4.2.8) we arrive at

\[
[M(x, z), w][M(x, z), w] = 0 \text{ for all } w, x, y, z \in R. \tag{4.2.9}
\]

This implies that \([M(x, z), w]R[M(x, z), w] = (0)\) for all \(w, x, z \in R \). Thus, we obtain, \([M(x, z), w] = 0\) for all \(w, x, z \in R \) by the semiprimeness of \(R \). Hence, \(M \) maps \(R \times R \) into \(Z(R) \). This completes the proof of our first theorem. \(\square \)

We now prove another theorem in this vein that is,

Theorem 4.2.2. Let \(R \) be a semiprime \(*\)-ring. If \(M : R \times R \rightarrow R \) is a biadditive mapping such that \(M(xy, z) = x^*M(y, z) \) for all \(x, y, z \in R \), then \(M \) maps \(R \times R \) into \(Z(R) \).

Proof. We compute \(M(xy, z) \) in two different ways. Then, we have

\[
M(xyw, z) = x^*y^*M(w, z) \text{ for all } w, x, y, z \in R, \tag{4.2.10}
\]

and

\[
M((xy)w, z) = y^*x^*M(w, z) \text{ for all } w, x, y, z \in R. \tag{4.2.11}
\]

Comparing the expressions so obtained for \(M(xy, z) \), we arrive at

\[
[x^*, y^*]M(w, z) = 0 \text{ for all } w, x, y, z \in R. \tag{4.2.12}
\]

Henceforth, using similar approach as we have used after (4.2.4) in the proof of the last paragraph of Theorem 4.2.1 with necessary variations, we find that \([M(w, z), y] = 0\) for all \(w, y, z \in R \). Hence, \(M \) maps \(R \times R \) into \(Z(R) \). \(\square \)

Corollary 4.2.1. Let \(R \) be a semisimple \(*\)-ring. If \(M : R \times R \rightarrow R \) is a biadditive mapping such that \(M(xy, z) = M(x, z)y^* \) for all \(x, y, z \in R \) or \(M(xy, z) = x^*M(y, z) \) for all \(x, y, z \in R \), then \(M \) maps \(R \times R \) into \(Z(R) \).

Proof. As a consequence of Theorems 4.2.1 & 4.2.2 and of the fact that every semisimple \(*\)-ring is semiprime \(*\)-ring. \(\square \)

Next, let us consider the prime versions of Theorem 4.2.1 and Theorem 4.2.2.
Theorem 4.2.3. Let R be a prime *-ring. If $M : R \times R \to R$ is a nonzero biadditive mapping such that $M(xy, z) = M(x, z)y^*$ for all $x, y, z \in R$, then R is commutative.

Proof. In view of Theorem 4.2.1, we have $M(x, z)[y, w] = 0$ for all $w, x, y, z \in R$. Substituting yx for y, we obtain $M(x, z)y[x, w] + M(x, z)[y, w]x = 0$ for all $w, x, y, z \in R$. This implies that $M(x, z)y[x, w] = 0$ for all $w, x, y, z \in R$, and hence $M(x, z)R[x, w] = (0)$ for all $w, x, z \in R$. Thus, the primeness of R forces that for each $x \in R$ either $[x, w] = 0$ or $M(x, z) = 0$ for all $w, z \in R$. The set of all $x \in R$ for which these two properties hold are additive subgroups of R whose union is R. But a group can not be the set-theoretic union of two of its proper subgroups, therefore $M(x, z) = 0$ or $[x, w] = 0$ for all $w, x, z \in R$. But $M(x, z) \neq 0$, we conclude that $[x, w] = 0$ for all $w, x \in R$ and hence R is commutative. \hfill \Box

Similarly, we can prove the following:

Theorem 4.2.4. Let R be a prime *-ring. If $M : R \times R \to R$ is a nonzero biadditive mapping such that $M(xy, z) = x^*M(y, z)$ for all $x, y, z \in R$, then R is commutative.

4.3 Generalized *-biderivations

During the last few decades there has been a great deal of work concerning generalized derivation in context of algebras on certain normed spaces (for references see [110], where further references can be found). By a generalized derivation on an algebra A, one usually means a mapping of the form $x \mapsto ax + xb$, where a and b are fixed elements in A. We prefer to call such mappings generalized inner derivations for the reason they present a generalization of the concept of inner derivations (i.e., the mapping of the form $x \mapsto ax - xa$). Now in a ring R, let F be a generalized inner derivation given by $F(x) = ax + xb$. Notice that $F(xy) = F(x)y + xI_b(y)$, where $I_b(y) = by - yb$ is the inner derivation defined by $b \in R$. In the year 1991, Brešar [57] introduced the concept of generalized derivation in rings. Recently, Hvala [110] initiated the algebraic study of generalized derivation, a function more general than derivation and extended some results concerning derivations to generalized derivations. In the present section, we continue the study in this direction. Let R be a *-ring. An additive mapping $d : R \to R$ is called a *-derivation (resp. reverse *-derivation) if $d(xy) = d(x)y^* + xd(y)$ (resp. $d(xy) = d(y)x^* + yd(x)$) holds for all $x, y \in R$. Following [20], a symmetric biadditive mapping $B : R \times R \to R$ is called a symmetric *-biderivation if $B(xy, z) = B(x, z)y^* + xB(y, z)$ holds for all $x, y, z \in R$, and B is called a symmetric reverse *-biderivation if $B(xy, z) = B(y, z)x^* + yB(x, z)$ holds for all $x, y, z \in R$. Motivated by
the definition of symmetric $*$-biderivation (resp. symmetric reverse $*$-biderivation), the concept of symmetric generalized $*$-biderivation (resp. symmetric generalized reverse $*$-biderivation) define as follows:

Definition 4.3.1. Let R be a $*$-ring. A symmetric biadditive mapping $G : R \times R \rightarrow R$ is called a symmetric generalized $*$-biderivation if there exists a symmetric $*$-biderivation B such that

$$G(xy, z) = G(x, z)y^* + xB(y, z)$$

holds for all $x, y, z \in R$.

Definition 4.3.2. Let R be a $*$-ring. A symmetric biadditive mapping $G : R \times R \rightarrow R$ is called a symmetric generalized reverse $*$-biderivation if there exists a symmetric reverse $*$-biderivation B such that

$$G(xy, z) = G(y, z)x^* + yB(x, z)$$

holds for all $x, y, z \in R$.

Example 4.3.1. Let R be a $*$-ring. If B is any symmetric $*$-biderivation of R and $f : R \times R \rightarrow R$ is a biadditive mapping such that

$$f(xy, z) = f(x, z)y^* \text{ and } f(x, yz) = f(x, y)z^*$$

for all $x, y, z \in R$. Then $f + B$ is a symmetric generalized $*$-biderivation on R.

Example 4.3.2. Let R be a $*$-ring. If B is any symmetric reverse $*$-biderivation of R and $f : R \times R \rightarrow R$ is a biadditive mapping such that

$$f(xy, z) = f(y, z)x^* \text{ and } f(x, yz) = f(x, z)y^*$$

for all $x, y, z \in R$. Then $f + B$ is a symmetric generalized reverse $*$-biderivation on R.

If $G : R \times R \rightarrow R$ is a symmetric generalized $*$-biderivation of R related to a symmetric $*$-biderivation $B : R \times R \rightarrow R$, then it is easy to see that G is a symmetric generalized $*$-biderivation of R if and only if G is of the form $G = B + M$, where B is a symmetric $*$-biderivation and M is symmetric left $*$-bimultiplier of R. Hence, we write $M = G - B$. In the proof of Theorem 4.3.2 below, we use this technique which can be regarded as a contribution to the theory of $*$-bimultipliers in $*$-rings. In [70], Brešar and Vukman proved that if a prime $*$-ring R admits a $*$-derivation (resp. reverse
Then either \(d = 0 \) or \(R \) is commutative. Very recently, Ashraf and Shakir [20] extend above mentioned result for semiprime \(*\)-ring involving symmetric \(*\)-biderivation. In fact, the result which we want to refer states as follows:

Theorem 4.3.1 ([20, Theorem 3.1]). Let \(R \) be a semiprime \(*\)-ring. Suppose that \(\alpha \) and \(\beta \) are endomorphisms of \(R \) such that \(\alpha \) is surjective. If \(R \) admits a symmetric \((\alpha, \beta)^*\)-biderivation \(B : R \times R \to R \), then \(B \) maps \(R \times R \) into \(Z(R) \).

Motivated by the above mentioned result, we prove the following theorem:

Theorem 4.3.2. Let \(R \) be a semiprime \(*\)-ring. If \(R \) admits a symmetric generalized \(*\)-biderivation \(G : R \times R \to R \) with associated a symmetric \(*\)-biderivation \(B : R \times R \to R \), then \(G \) maps \(R \times R \) into \(Z(R) \).

Proof. Let us give the proof of this theorem in the following two steps:

Step 1. We assume that \(G \) is a symmetric generalized \(*\)-biderivation with associated a symmetric \(*\)-biderivation \(B \). If \(B = 0 \), then \(G \) is a left \(*\)-bimultiplier on \(R \). Thus in view of Theorem 4.2.1, we get the required result.

Step 2. On the other hand, suppose that the associated \(*\)-biderivation \(B \neq 0 \). Then, we set \(G = B + M \) and hence \(M = G - B \) where \(M \), \(G \) and \(B \) are biadditive maps on \(R \). Therefore, we have

\[
M(xy, z) = G(xy, z) - B(xy, z)
= G(x, z)y^* + xB(y, z) - B(x, z)y^* - xB(y, z)
= (G(x, z) - B(x, z))y^*
= (G - B)(x, z)y^*
= M(x, z)y^* \quad \text{for all } x, y, z \in R.
\]

This implies that \(M(xy, z) = M(x, z)y^* \) for all \(x, y, z \in R \). That is, \(M \) is a left \(*\)-bimultiplier on \(R \). Therefore, we conclude that \(G \) can be written as \(G = B + M \), where \(B \) is a symmetric \(*\)-biderivation and \(M \) is a left \(*\)-bimultiplier on \(R \). Thus, in view of Theorem 4.2.1 and Theorem 4.3.1, (for \(\alpha = \beta = I_R \), the identity mapping on \(R \)), we conclude that \(G \) maps \(R \times R \) into \(Z(R) \). This proves the theorem completely.

Next, we turn to a corresponding result in the case of generalized reverse \(*\)-biderivation.
Theorem 4.3.3. Let R be a semiprime $*$-ring. If R admits a symmetric generalized reverse $*$-biderivation $G : R \times R \to R$ with associated a nonzero symmetric reverse $*$-biderivation $B : R \times R \to R$, then $[B(x,y),t] = 0$ for all $x, y, t \in R$.

Proof. We are given that G is a symmetric generalized reverse $*$-biderivation with associated a nonzero symmetric reverse $*$-biderivation B, we have

$$G(x, yz) = G(x, z)y^* + zB(x, y) \quad \text{for all } x, y, z \in R. \quad (4.3.1)$$

Replacing z by zt in the above relation, we find that

$$G(x, y(zt)) = G(x, t)z^*y^* + tB(x, z)y^* + ztB(x, y) \quad \text{for all } x, y, z, t \in R. \quad (4.3.2)$$

Also, we have

$$G(x, (yz)t) = G(x, t)z^*y^* + tB(x, z)y^* - tzB(x, y) \quad \text{for all } x, y, z, t \in R. \quad (4.3.3)$$

Comparing (4.3.2) with (4.3.3), we obtain

$$[z, t]B(x, y) = 0 \quad \text{for all } x, y, z, t \in R. \quad (4.3.4)$$

Substituting $B(x, y)z$ for z in (4.3.4) we find that

$$B(x, y)[z, t]B(x, y) + [B(x, y), t]zB(x, y) = 0 \quad \text{for all } x, y, z, t \in R. \quad (4.3.5)$$

In view of (4.3.4), the above expression reduces to

$$[B(x, y), t]zB(x, y) = 0 \quad \text{for all } x, y, z, t \in R. \quad (4.3.6)$$

Taking $z = zt$ in (4.3.6), we get

$$[B(x, y), t]ztB(x, y) = 0 \quad \text{for all } x, y, z, t \in R. \quad (4.3.7)$$

Right multiplication by t to equation (4.3.6) forces that

$$[B(x, y), t]zB(x, y)t = 0 \quad \text{for all } x, y, z, t \in R. \quad (4.3.8)$$

Subtracting (4.3.7) from (4.3.8), we arrive at

$$[B(x, y), t]z[B(x, y), t] = 0 \quad \text{for all } x, y, z, t \in R. \quad (4.3.9)$$
The last equation can be rewritten in the form \([B(x, y), t]R[B(x, y), t] = 0\) for all \(x, y, t \in R\). It follows from the semiprimeness of \(R\) that \([B(x, y), t] = 0\) for all \(x, y, t \in R\). This proves the theorem.

Theorem 4.3.4. Let \(R\) be a prime *-ring. If \(R\) admits a symmetric generalized reverse *-biderivation \(G\) with associated a nonzero symmetric reverse *-biderivation \(B\), then \(R\) is commutative.

Proof. By Theorem 4.3.3, we have \([B(x, y), t] = 0\) for all \(x, y, t \in R\). Replace \(y\) by \(yz\) in the last expression and using the fact that \(B\) is a reverse *-biderivation, we obtain \(B(x, z)[y^*, t] + [z, t]B(x, y) = 0\) for all \(t, x, y, z \in R\). This implies that \(B(x, z)[y^*, z] = 0\) for all \(x, y, z \in R\) by (4.3.4). Substituting \(y^*_1\) for \(y\) in the last relation, we get \(B(x, z)[y_1, z] = 0\) for all \(x, y_1, z \in R\). Now replace \(y_1\) by \(w\) to get \(B(x, z)[w, t; z] = 0\) for all \(w, x, z, t \in R\). That is, \(B(x, z)R[t, z] = 0\) for all \(x, z, t \in R\). The primeness of \(R\) yields that either \([t, z] = 0\) or \(B(x, z) = 0\) for all \(x, t \in R\). Now, we put \(A_1 = \{z \in R \mid [t, z] = 0\text{ for all } t \in R\}\) and \(A_2 = \{z \in R \mid B(x, z) = 0\text{ for all } x \in R\}\). Then, clearly \(A_1\) and \(A_2\) are additive subgroups of \(R\). Moreover, by the discussion given, \(R\) is the set-theoretic union of \(A_1\) and \(A_2\). But a group can not be the set-theoretic union of two of its proper subgroups, hence \(A_1 \neq R\) or \(A_2 \neq R\). If \(A_1 = R\), then \([t, z] = 0\) for all \(z, t \in R\) and hence \(R\) is commutative. On the other hand if \(A_2 = R\), then \(B(x, z) = 0\) for all \(x, z \in R\), a contradiction. With this the proof is complete. □

Similarly, we can prove the following:

Theorem 4.3.5. Let \(R\) be a prime *-ring. If \(R\) admits a symmetric generalized *-biderivation \(G\) with associated a symmetric *-biderivation \(B\), then \(R\) is commutative.

4.4 Applications to \(C^*\)-algebras

The objective of the present section is to discuss the applications of our previous results to \(C^*\)-algebras. A Banach algebra is a linear associative algebra which, as a vector space, is a Banach space with the norm \(\| \cdot \|\) satisfying the multiplicative inequality: \(\|xy\| \leq \|x\|\|y\|\) for all \(x\) and \(y\) in \(A\). A \(C^*\)-algebra \(A\) is a Banach *-algebra with the additional norm condition \(\|x^*x\| = \|x\|^2\) for all \(x \in A\). Throughout the present section, \(C^*\)-algebras are assumed to be non unital unless indicated otherwise. We start by proving some results concerning \(C^*\)-algebras.

Theorem 4.4.1. Let \(A\) be a \(C^*\)-algebra. If \(M : A \times A \to A\) is a bilinear mapping such that \(M(xy, z) = M(x, z)y^*\) for all \(x, y, z \in A\) or \(M(xy, z) = x^*M(y, z)\) for all \(x, y, z \in A\), then \(M\) maps \(A \times A\) into \(Z(A)\).
Proof. We are given that $M : A \times A \to A$ is a bilinear mapping such that $M(xy, z) = M(x, z)y^*$ for all $x, y, z \in A$. Since A is C^*-algebra, so that A is semiprime $*$-ring by Remark 1.2.14. In view of Theorem 4.2.1, we are forced to conclude that M maps $A \times A$ into $Z(R)$.

Similarly, we can prove the result for the case $M(xy, z) = x^*M(y, z)$ for all $x, y, z \in A$. Thereby the proof of the theorem is completed.

Theorem 4.4.2. Let A be a C^*-algebra. If A admits a symmetric bilinear generalized $*$-biderivation $G : A \times A \to A$ with associated a symmetric bilinear $*$-biderivation $B : A \times A \to A$, then G maps $A \times A$ into $Z(A)$.

Proof. As a consequence of Theorem 4.3.2, and of the fact that every C^*-algebra is semiprime $*$-ring (viz.; [15]).

Similarly, we can establish the following:

Theorem 4.4.3. Let A be a C^*-algebra. If A admits a symmetric bilinear generalized reverse $*$-biderivation $G : A \times A \to A$ with an associated nonzero symmetric bilinear reverse $*$-biderivation $B : A \times A \to A$, then G maps $A \times A$ into $Z(A)$.