CHAPTER - V
Discussion and Conclusion

The findings of the present research are given below:

1. Humorous and nonhumorous informations have differential effect on conversation memory. More specifically, conversation memory for humorous version of conversation was found much superior than for nonhumorous version of conversation.

2. Congruent and incongruent versions of conversations have differential effect on conversation memory. In other words, conversation memory for congruent version is lower than for incongruent version of conversation.

3. Mood has no impact on conversation memory. More specifically, listener’s mood be it elated, depressed or neutral has no differential effect on conversation memory.

4. No significant interactional effect was found between humorous-nonhumorous and congruent-incongruent versions of conversation on conversation memory.

5. No significant interactional effect was found between humorous-nonhumorous and mood on conversation memory.

6. No significant interactional effect was found between congruent-incongruent versions of conversation and mood on conversation memory.

7. No significant interactional effect was found among humorous-nonhumorous, congruent-incongruent versions of conversation and mood on conversation memory.
The first finding of the present research, i.e. conversation memory for humorous version of conversation was found much superior than for nonhumorous version of conversation, is in consonance with the findings obtained by numerous researchers. For instance, Kaplan and Pascoe (1977), Johnson (1990), Schmidt (1994), Kher, Molstad and Donahue (1999), Berk (2000), Powers (2005), Bacay (2006), and Berk (2007) have consistently demonstrated that humorous information facilitates earning speed, solving problems and memory. Numerous explanations may be offered for the beneficial effect of humorous version of conversation on conversation memory. First humorous information reduces anxiety, tension and stress (Berk, 1997, 1998c, 1999, 2000, and 2007) which in turn prepares a fertile ground for the enhancement of memory. Secondly humor promotes an objectivity that buffers the negative response (Galloway and Cropley, 1999) and provides a sense of empowerment over the testing situations (Sherman, 1998; Thorson 1985; and Wooten, 1996) that can improve subject's mental functioning and performance. A bulk of research evidences, on the psychological benefits, thus concentrate on three outcomes: first, anxiety reduction (Cann, Holt. and Calhoun 1999; DeSpelder and Strickland, 1983; Doris and Fierman, 1956; Dworkin and Efran, 1967; Liechty 1987; Nezu, Nezu and Blissett, 1988; Singer 1968; Yovetich, Dale, and Hudak 1990); second, tension reduction (Brill 1940; Goodheart 1994; O'Connell 1960; Wooten 1996) and third is stress reduction (Bizi, Keinan, and Beit-Hallahmi, 1988; Dixon, 1976, 1980; Labott and Martin 1987; Lefcourt et al. 1995; Lefcourt and Martin 1986; Lefcourt and Thomas 1998; Martin et al. 1993; Martin and Lefcourt, 1983; Nezu et al. 1988; Prerost 1988; White and Camarena, 1989; and Wooten 1996). Moreover, Berk (2000) and Berk et al. (2006) who carried out six year study, found that humor is
effective in reducing anxiety and making it possible to perform best on examinations.

The first finding of the present research may also be explained in terms of improved immune system. It has been demonstrated by numerous researchers that laughter generates an increase in positive emotion (Backorowski and Owren, 2001) and produces self-reported improvements in immune system functioning (Mahoney, Burroughs and Lippman, 2002). Importantly, the effect of laughter on the self-reports of immune system functioning is mediated by subjective experiences of positive emotion, especially for older adults (Mahoney et al. 2002). This suggests that positive emotions produced by the behavior of laughing may be important in predicting healthy outcomes for the immune system. Positive emotions mediate the effects of coping with humor and immune system functioning (Dillon, Minchoff, and Baker, 1985-1986). Laughter (a behavior) is often associated with humor (a cognitive construct). Individual vary in the content to which they use humor to cope with stressful situation. Those with greater tendencies to cope with humor report greater daily positive mood (Dillon et al., 1985-1986). Consequently, in response to stress, those with greater propensities to cope with humor show increases in levels of salivary immunoglobulin A (S-Ig A), a vital immune system protein, which is the body’s first line of defense against respiratory illnesses (Dillon et al., 1985-1986). Corroborating work in an experience-sampling study show that self-reported positive emotions (vs. negative emotions) predict increases in S-Ig levels, thereby enhancing immune functioning (Stone, Valdinarsdattir, Jandorf, Cox, and Neale, 1987). These findings indicate that persons who are able to regain and maintain positive emotional states when faced with a stressful life experience (e.g., via laughter, coping with humor) can
show improvements in immune function. In short, humor improves immune system which in turn improves physical and mental health. It is an open secret that health increases the efficiency of cognitive activities including memory. The first finding of our research, i.e., humorous version of conversation is better remembered than nonhumorous version, provides strong empirical evidence to the contention that humor strengthens immune system which in turn strengthens physical and mental health leading to enhancement of memory.

The first finding of our research also provides strong empirical evidence to the hypothesis proposed by McGhee (1983). According to his hypothesis, humor produces physiological arousal. McGhee noted increased heart rate and respiration rate in response to humor and argued that these responses were indicative of activation of sympathetic nervous system. A number of researchers have demonstrated that physiological arousal enhances memory of the subject (Craik and Blankstein 1975; Ellis, Detterman, Runcie, MaCarver, and Craig, 1971; Maltzman, Kantor, and Langdon, 1966; Walker and Tarte, 1963; Bohannon, 1988; Brown and Kulik, 1977; Christianson 1989; Pillemer, 1984).

Another potential explanation for our first finding may be found in “differential rehearsal hypothesis”. According to this hypothesis, subjects intentionally rehearse humorous material at the expense of nonhumorous material and this increased rehearsal is responsible for increased retention (Atkinson and Shiffrin, 1968).

Apart from “differential rehearsal hypothesis”, “differential attention hypothesis” also received empirical support from our finding under discussion. According to this hypothesis, humorous sentences receive more attention than nonhumorous sentences and this increased
attention is responsible for increased retention (Bandes, 1988; Bryant et al., 1979; Wandersee, 1982; Gorham and Christophel, 1990; Schmidt, 1991; Bobek, 2002; Friedman, Halpen, and Salb, 1999; McLaughlin, 2001; Power, 2005).

Our first finding may also be explained in terms of 'surprise hypothesis' or retrieval strategies. This hypothesis asserts that subject may not expect to read humorous material as part of an experiment and subject may develop a bias toward retrieving humorous material (Schmidt, 1994). Thus, the first finding of our research provides empirical support to these hypotheses.

A survey of literature reveals that the theoretical background of humor is varied and controversial (Levine, 1969; Morreall, 1987; Nahemow, Macluskey-Fawcett, and McGhee, 1986). Hundreds of theories of humor were proposed by early philosophers and theorists (Liechty, 1987). Initially these theories were grouped into three categories namely incongruent, superiority and tension reduction (DeSpelder and Strickland, 1983; Lefcourt and Martin, 1986; Liechty, 1987). However, later on the nomenclature of these three categories of theories were changed and were labeled as cognitive-perceptual, social-behavioral and psychoanalytical theories of humor (Davies, 1977; Levine, 1969; Sullivan and Deane, 1988). Among these theories, psychoanalytical theory is considered as the best theory that provides best explanation for the use of humor to teach sensitive topics. This theory views humor as a mechanism for releasing fears and constantly associated with difficult situations (Liechty, 1987). Humor is seen to enable release of internal tensions and to provide the needed mechanisms for coping with misfortunes. Moreover, humor is emotional chaos remembered in tranquility. The first finding of our research strongly supports the
psychoanalytical theory of humor by demonstrating significantly higher conversation memory for humorous material than for nonhumorous ones. This higher conversation memory for humorous material is due to the fact that humorous material reduced stress and anxiety as advocated by psychoanalytical theory.

Somewhat recently a scientific discovery is reported in a reputed newspaper in which it has been reported that researchers at the University and Imperial College in London played a series of sounds to volunteers while measuring their brains response using a functional MRI scanner. Some of the sounds were positive such as laughter while others were unpleasant like screaming. They found that hearing laughter produced a greater response in the premotor cortical region of a listener's brain—an area which is activated when one smiles. It should be noted here that cortex also play important role in the storage of memories. This report not only demonstrates the existence of an actual physical mechanism which facilitates the spread of humor but implicitly suggests that this mechanism may also facilitate retention of humorous material (The Time of India, New Delhi, Monday, December 18, 2006, pp. 14). Our first finding is consistent with this report.

The second finding of our research i.e. incongruent version of conversation shows higher conversation memory than congruent version of conversation, is in line with the finding obtained by numerous researchers (Eysenck, 1979; Humphreys, 1976; Hunt and Eistein, 1981; Jacoby and Craik, 1979; Hunt, 1995; Hunt and McDaniel, 1993; Hunt and Smith, 1996; Rajaram, 1998; Smith and Hunt, 2000; Hunt, 2003; Ceraci and Rajaram, 2004; Brandt, Gardiner, and Macrae, 2006; Park, Arndt, and Reder, 2006). This finding not only provides empirical support to numerous researchers just mentioned but also helps in resolving the
controversy regarding the influence of congruent-incongruent information on memory. A number of researchers have also shown that incongruent information is unlikely to be remembered (Cantor and Mischei, 1977; Cohen, 1981; Hamilton, 1979; Markus, 1977). Since more impressive evidences are available to the effect that incongruent information is better remembered than congruent information, the finding of our research strongly strengthens further these evidences.

The second finding of our research, however, apparently appears inconsistent with the finding obtained by Hunt and Elliott (1980) who found that meaningfulness was directly related to recall but orthographic distinctiveness (incongruent) has no reliable effect on recall. Hunt and Elliott (1980), however, found higher recognition memory for orthographic distinctiveness than for common words. This finding clearly demonstrated that distinctiveness or incongruency influences memory depending on the type of memory measures. In this light it is logical to argue that our finding under discussion is not conflicting with the findings obtained by Hunt and Elliott (1980).

The second finding of the present research, i.e. conversation memory is higher for incongruent version of conversation than for congruent version of conversation, may also be explained in at least two ways. As suggested by Fiske (1980) incongruent information receives more attention and more weight. This mechanism may be responsible for better conversation memory when incongruent information is used. Similarly, Crocker, Hannah, and Weber (1983) argued that incongruent items should be more informative than congruent items when they are attributed to dispositional causes. Consequently, incongruent, dispositionally-attributed items may receive more attention and be better recalled (Taylor and Fiske, 1978).
Another potential explanation of our finding under discussion may be found in the concept of pathways or links. According to Hastie and Kumar (1979) incongruent behaviors spend more time in working memory because they must be explained and integrated. While in working memory, incongruent items are linked to other items also present in working memory. Consequently, incongruent items are linked to more other items than congruent items. Since the probability of retrieving an item depends on the number of pathways or links to that item, incongruent items are particularly likely to be found in a search of memory. The second finding of our research provides empirical evidence to this suggestion made by Hastie and Kumar (1979).

Still another possible explanation of the finding under discussion may be that incongruent items might have served as discriminative cues which in turn helped in enhancing memory (Hirshman and Jackson, 1997).

Distinctive processing may also provide explanation for the second finding of the present research. Distinctive processing has been defined as unique processing of an item at encoding that enhances discriminability of that item at retrieval (Jacoby and Craik, 1979; Lockhart, Craik, and Jacoby, 1976). Continuing research along this line has refined the definition of distinctive processing to the processing of differences among elements that are similar on some dimension, a definition that explicitly states the relativity of distinctive processing (Hunt and McDaniel, 1993). Thus distinctive processing is not the absolute processing of differences but is processing that marks something as different from other things that are related on some dimension. Such processing then facilitates accuracy because the combined processing of similarity and difference is highly diagnostic of a particular item (Hunt,
2003). These ideas may be applied to the encoding and retrieval processes of memory. The finding under discussion provides empirical support to these ideas.

Perhaps the best explanation of the second finding comes from the isolation or von Restorff effect (1933). It refers to the finding that the people tend to have very good memory for unusual or incongruent item. In other words the isolation effect refers to the finding that people have superior memory for an item when it is different from the other items in the list than when it is not (Geraci and Rajaram, 2004). Our finding is in total agreement with this contention.

It is highly logical to describe briefly the “distinctive-fluency framework” proposed by Rajaram (1996). According to her framework manipulations that encourage distinctive or elaborate processing would to the elicitation of “remember” responses. On the other hand, items that were processed more on the basis of fluency would yield a preponderance of “know” responses. This framework received empirical support from Wickham, Morris, and Fritz (2000) and from the studies carried out by Brandt, Macrae, Schloerscheidt and Milne (2003) and Brandt, Gardiner, and Macrae (2006). Our second finding also provided undisputed support to Rajaram’s framework by showing that incongruent (or distinctive) items are better remembered as compared to congruent (or non-distinctive) items.

Though Berk (2007) was mainly interested in the influence of humor on memory but he also developed an interesting incongruent formula which according to him, is the foundation of most all types of jokes. Accordingly it is the juxtaposition of the “expected” with the unexpected when we expect everything to be serious, the unexpected
twist not only creates humor but also incongruity which in turn leads to better recall of humorous or incongruent information. Our second findings totally agree with this contention.

The third finding of the present research, i.e. different shades of mood (elated, depressed and neutral) have no differential effect on conversation memory, is not in the expected direction. However, many explanations may be offered. First, it may be recalled that different shades of mood were induced by Modified Velten Mood Induction Technique (MVMIT). Though this technique is widely used by researchers for inducing mood, the technique is not free from criticism. For instance, Frost, Graf, and Becker (1979) failed to support the hypothesis that depressed mood are induced by reading self-devaluative statement. They further noted that reading self-devaluative statements did not induce more depressed mood among subject than subject in the neutral condition. If it is so, it is logical to assume that reading uplifting mood statements may not induce as strong elated mood as desired by the experimenter. Thus non-existence of differential effect of different shades of mood on conversation memory may be attributed to this contention. This contention was further strengthened by Riskind, Rholes, and Eggers (1982) who failed to find a correlation between changes produced by the VMIP in mood ratings and memory latencies. This finding suggests that mood cannot account for the memory results and that VMIP statements may have a direct cognitive priming effect on the availability of memories (Teasdale and Fogarty, 1979).

Second, there are conflicting results regarding the effect of arousal on memory. Craik and Blankstein (1975), Pettigrew (1978), and Zajonc (1980), for instance, have shown facilitative effect of arousal on memory whereas other investigators, on the other hand, have argued that
consolidation and retrieval may depend not so much on arousal as on the importance of the consequences for subsequent interaction (Brown and Kulik, 1977; MacWhinney, Keenan and Reinke, 1982). MacWhinney et al. (1982) made it crystal clear that arousal, as measured by Electrodermal response (EDR), is not a good predictor of long term memory for natural conversation. They found that though EDR is a useful indicator of people’s immediate reaction to conversation, it does not appear to be a major determinant of the processing and storage of sentences for long term retention. They admitted that arousal may be important in the initiation of rich memories for perceptual detail but retention of these memories depends on their consequences for subsequent interactions. Since mood whether elated or depressed increases arousal level, the third finding of our research may be explained in terms of interactional content of the sentences used in conversation. Our finding is also in agreement with the finding obtained by Clark, Milberg and Ross (1983) who demonstrated that enhanced arousal is not necessary for positive mood to cue positive material from memory.

Third, absence of differential effect of different shades of mood on memory indirectly provides empirical support to those studies which failed to demonstrate the existence of mood congruent memory (Bower, Gilligan, and Monteiro, 1981; Bower and Mayer, 1985; Bower, Monteiro, and Gilligan, 1978; Brown and Taylor, 1986; Clark, Teasdale, Broadsbent, and Martin, 1983; Coleman, 1975; Gerrig and Bower, 1982; Gotlib and McCann, 1984; Isen, Shalker, Clark, and Karp, 1978; Mecklenbrauker and Hager, 1984; Siegel, Johnson, and Sarason, 1979; and Parrott and Sabini 1990). This empirical evidence becomes relevant as stimulus material used in the present research may be considered as having positive (humorous) and negative (nonhumorous—totally dry discussion)
valence. Moreover, the third finding of our research is totally in agreement with the finding obtained by Bower, Monteiro, and Gilligan (1978) and Gotlib and McCann (1984) who also found no effect of mood on recall.

Fourth, a closely related phenomenon of mood congruence is mood dependent memory. The mood dependent memory was first of all demonstrated by Bower, Monteiro, and Gilligan in 1978, in which subjects showed better recall when the mood at retrieval matches with the mood at encoding. However, after few replications of these findings, numerous researchers failed to find mood dependent memory (Bower and Mayer, 1985a, 1989). These inconsistencies in the findings forced Bower (1985) to generate a hypothesis known as “causal belongingness”. According to this hypothesis what is needed for mood dependent retrieval to occur is for mood related structures (schemas) to be created at the time of presentation in storage. If such mood related structures are not created, mood dependent retrieval does not occur. The third finding of our research may be explained in terms of absence of mood related structures. As pointed by Eich, Macaulay and Ryan (1994) the more one relies on external resources rather than on internal resources, the more likely is one’s memory for the events to be mood independent. Thus if two individuals—one happy, the other sad—are shown, say, a ‘rose’ and after some retention interval if these individuals are asked to identify and describe what they had seen before retention interval, both individuals are apt to say much the same thing and to encode the ‘rose’ event in much the same fashion. In other words, a ‘rose’ is a ‘rose’ regardless of whether it is seen with through a happy or sad eye. Our third finding provides empirical support to this “do-it-yourself principle” proposed by Eich, Macaulay and Ryan (1994). Thus the subjects of our study who were
under positive, negative and neutral moods might have relied heavily on external resources rather than internal resources, hence they did not differ with respect to their memory performance.

Fifth, somewhat recently Fredrickson and Branigan (2005) published a research paper entitled “positive emotions broaden the scope of attention and thought-action repertoires” in which they provided empirical support to “broaden-and-build theory” of emotions. The broaden-and-build theory was originally proposed by Fredrickson (1998, 2001). The ‘broaden-and-build theory’ of positive emotion is based on two hypotheses—broaden hypothesis and narrow hypothesis. Broaden hypothesis states that positive emotions broaden the scope of attention, cognition and action, widening the array of percepts, thoughts and actions presently in mind whereas narrow hypothesis assert that negative emotions have opposite effects on attention, cognition and action, narrow the array of percepts and thoughts. Though these hypotheses have received empirical support from the studies carried out by Fredrickson and Branigan (2005), the third finding of our present research, i.e. positive and negative mood have no differential effect on conversation memory, does not provide any support to these two hypothesis generated from ‘broaden-and-build theory’ of positive emotion, rather our finding provides empirical support to ‘opponent-process theory of emotion proposed by Solomon (1980). According to this theory when an environmental stimulus (e.g., a stressor) elicits an initial emotional reaction (e.g., distress), this emotion in turn elicits an opponent emotion (e.g., happiness or well being). The theory further advocates that at any given time, a person’s emotional state is the sum of the initial and opponent emotion. If a stressful event occurs, the initial negative emotional response will be dominant while the stressor lasts. After the
stressful event ends, however the opponent positive emotion will dominate, and a person will be in a better mood than usual. This mechanism, perhaps, is responsible for the absence of differential effect of positive and negative mood on conversation memory.

Sixth plausible explanation of the third finding of our research lies in the phenomenon widely known as inhibition of emotional information. It has been demonstrated by Goeleven, DeRaedt and Koster (2007) that as compared with a neutral mood, negative mood state did not lead to inhibitory dysfunction of emotional information whereas positive mood results in a reduction or absence of inhibitory functioning as compared with a neutral mood condition. They further found that positive mood is associated with increased distractibility, causing poor performance on inhibition depend processes suggest deductive reasoning (Oaksford et al. 1996) and might cause intrusions and memory lapses (Hasher et al. 2007). Like Joormann (2004) and Goeleven et al. (2006a), Goeleven et al. (2007) concluded that reduced inhibition of affective (or negative) information is not linked with negative mood state itself but seems to be due to a rather stable cognitive vulnerability factor of depression. Thus our third finding is in agreement with the above mentioned findings.

Finally, our third finding provides empirical support to both associative network theory in particular and to Resource Allocation Model (Ellis and Ashbrook, 1987) in general. So far as associative network theory is concerned, it predicts that mood dependent and mood congruent effects should be symmetrical—that is, the shifting from happiness to sadness should have the same effect as shifting from sadness to happiness; and the effects of sadness on negative material should be the same as the effects of happiness on positive material. So far as resource allocation model is concerned, it asserts that both positive and
negative moods alike should induce extra-task processing, reduce attentional capacity, and impair performance on effortful cognitive tasks. In other words this model predicts that positive and negative moods should have same effect on performance. Here it is important to note that our finding, i.e. positive and negative moods have same effect on conversation memory, may be explained by both associative network theory and resource allocation model.

The first interactional effect of humorous-nonhumorous and congruent-incongruent versions of conversation on conversation memory is insignificant. This insignificant interactional effect suggests that conversation memory of humorous and nonhumorous versions is independent of congruent and incongruent versions of conversation. The finding reveals that though humorous-nonhumorous and congruent-incongruent versions of conversation influence conversation memory when considered separately but when both variables are combined, its interaction becomes insignificant.

The remaining three interactional effects, i.e. interaction between humorous-nonhumorous version of conversation and mood; interaction between congruent-incongruent versions of conversation and mood; and interaction among humorous-nonhumorous, congruent-incongruent versions of conversation and mood on conversation memory, are insignificant. These insignificant interactional effects may also be explained in the same way as we have explained the first insignificant interactional effect.

The overall findings of the present research not only open new area of research in memory but also highlight a new mechanism underlying interpersonal attraction, interpersonal relationship and impression
formation. Moreover, the findings of present research may also be applied in educational setting like preparing syllabi and teaching methods.

The fact that humorous and incongruent versions of conversation was better recalled reveals that subjects encoded humorous and incongruent information more effectively which, in turn, helped in better memory performance. Now a question arises why humorous and incongruent information was encoded more effortfully and effectively and was better(220,461),(780,561)(54,745),(906,996) recalled? From social point of view it may suggested that subjects found more attraction and interest in humorous and incongruent versions of conversation hence they paid more attention to humorous and incongruent versions of conversation. This mechanism might have contributed to higher conversation memory for these two types of versions of conversation. It is an open secret that if we like conversation of a person than we not only like the person but also developed positive impression about that person. The findings of our research lead us to emphasize that in order to develop interpersonal attraction or good interpersonal relationship, we must use humorous statement in our conversation with others. It is interesting to note that incongruity usually itself creates humorous context. It is very common experience that humorous statements attract us toward the person who has uttered them and we developed a strong urge to meet that person again and again. Thus frequent meeting with the person may sow the seed for the development of interpersonal attraction and interpersonal relationship. Thus the findings of our study may be considered to contribute not only in the area of experimental psychology but also to the area of social psychology particularly area of interpersonal attraction and impression format on.

We firmly believe that findings of our investigation, if applied in educational settings, would be highly beneficial not only for academic
performance of the students but would also be helpful in the development of a rapport between teachers and taught. Early studies have also demonstrated this fact. Twenty-six studies identified humor as one of the quality of effective teachers (Ford, 1978). Moreover Hildebrand (1973) found that those faculty members who possess dynamism/enthusiasm receive high rating among students. Similarly, Hight (1958) identified humor as one of the most important qualities of a good teacher. He saw the true purpose of humor to be the establishment of a link between students and teachers through enjoyment. It has been found that humor helps students to be attentive, presents a true picture of subjects and establishes rapport in a classroom setting and produces a relaxed, positive atmosphere conducive to better learning; promotes increased comprehension and retention; aiding cognitive development; manages undesirable behavior; build self confidence; and enhances the lives of both teachers and taught (Desberg, Henschel, Marshall, and McGhee, 1981; Hunsaker, 1988; Hyman, 1974; MacAdam, 1985; Powell and Andresen, 1985; Watson and Emerson, 1988; Ziv, 1988; and Schmidt, 1994). Powers (2005) has cited a very interesting as well as important quote of Baughman (1979). The quote is “one of the greatest sins in teaching is to be boring”. Powers (2005) has advocated that effective use of humor can help teacher engage students and establish rapport with them, maintain their attention, create an open classroom atmosphere, and even ease distress during examinations.

It has been further advocated that if teachers want students to earn, then they should consider making learning more palatable, even enjoyable. This contention not only supports the use of humor in the classroom, but humor should be incorporated across all academic levels (White, 2001; Torok, et al., 2004; and Bacay, 2006). The same point is
emphasized by learner-centered psychological principles of the American Psychological Association (2006).

The above findings vindicate our contention that findings of our research, if implemented, would contribute a lot in raising the academic standard and academic excellence in educational settings.

Though we have attempted to provide best possible and most satisfactory explanations of our findings but an element of doubt still haunts our mind with regard to the effect of mood on conversation memory. In fact we were expecting different magnitude of conversation memory under different shades of mood. The third findings of our research did not fulfill our expectation rather we found no differential effect of elated, depressed, and neutral mood on conversation memory. As mentioned somewhere else Modified Velten Mood Induction Technique (MVMIT) might have not induced different shades of mood of desired intensity resulting into absence of any differential effect of mood on conversation memory. It is therefore suggested that in future studies on mood and memory, mood should be induced not only by MVMIT but also by other effective and well tested technique like music. If mood is induced by a combination of mood induction techniques it is possible that we can obtain differential effect of different shades of mood on memory. Thus further research is required in this direction so that ambiguity regarding the role of mood in memory may be resolved.