REFERENCE

27. DSM CP 352. DSM methods for the analysis of caprolactam

33. Yoshie Asegawa & Suji moto T biotechnol biochem 56 (8). 1319(1992)

37. Krishnan. B and Gaudy A. F “response of as to quantitative shock loading under a variety of operational conditions” Proc 30th Ind conf Purdue Univ, Ext Ser 30 , 632(1977)

47. Andersen Murray S, Hall Roberta A & Griffin Martin, J. Gen microbiology, 120(1) 1980. 89-94

57. Sherrard J.H. Destruction of alkalinity in aerobic activated sludge
process. Journal of water pollution control federation vol 48,7,1834(1972)

LIST OF TABLES

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>DESCRIPTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Table 2.1</td>
<td>Characteristics of caprolactam plant wastewater</td>
<td>50</td>
</tr>
<tr>
<td>2.</td>
<td>Table 2.2</td>
<td>Organic composition of caprolactam wastewater</td>
<td>51</td>
</tr>
<tr>
<td>3.</td>
<td>Table 2.3</td>
<td>COD vs BOD of plant waste water</td>
<td>52</td>
</tr>
<tr>
<td>4.</td>
<td>Table 2.4</td>
<td>Waste water characteristics for batch biodegradation study</td>
<td>52</td>
</tr>
<tr>
<td>5.</td>
<td>Table 2.5</td>
<td>Biodegradation study batch process</td>
<td>53</td>
</tr>
<tr>
<td>6.</td>
<td>Table 2.6</td>
<td>Oxygen uptake after addition of plant waste water</td>
<td>57</td>
</tr>
<tr>
<td>7.</td>
<td>Table 2.7</td>
<td>Endogenous respiration</td>
<td>57</td>
</tr>
<tr>
<td>8.</td>
<td>Table 2.8</td>
<td>Biodegradation study (continuous process)</td>
<td>58</td>
</tr>
<tr>
<td>9.</td>
<td>Table 3.1</td>
<td>Effect of F/M ratio on COD Removal efficiency</td>
<td>77</td>
</tr>
<tr>
<td>10.</td>
<td>Table 3.2</td>
<td>Effect of HRT on COD removal</td>
<td>81</td>
</tr>
<tr>
<td>11.</td>
<td>Table 3.3</td>
<td>Effect of pH on the oxygen uptake rate and COD Removal efficiency</td>
<td>83</td>
</tr>
<tr>
<td>12.</td>
<td>Table 3.4</td>
<td>Effect of air flow rate on COD removal efficiency</td>
<td>85</td>
</tr>
<tr>
<td>13.</td>
<td>Table 3.5</td>
<td>Effect of agitation on COD Removal efficiency</td>
<td>87</td>
</tr>
</tbody>
</table>
CHAPTER- 4

14. Table 4.1 Biodegradation of cyclohexanone 112
15. Table 4.2 Biodegradation of cyclohexanol 116
16. Table 4.3 Biodegradation of caprolactam 118
17. Table 4.4 Biodegradation of Anone & Anol as binary substrate 121
18. Table 4.5 Influent Characteristics for Continuous feed study 126
19. Table 4.6 Effluent Characteristics at various HRT 126
20. Table 4.7 Reduction % at various HRT 126

CHAPTER-5

21. Table 5.1 Nitrification in plant waste water(Batch study) 143
22. Table 5.2 Nitrification in Synthetic effluent containing lactam 145
23. Table 5.3 Effect of F/M Ratio on nitrification 147
24. Table 5.4 Effect of nitrification on pH 148
25. Table 5.5 Growth study at pH 3.0 150
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>DESCRIPTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Figure 1.1</td>
<td>Bacterial Growth characteristics</td>
<td>26</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Figure 2.1</td>
<td>Caprolactam manufacturing steps</td>
<td>45</td>
</tr>
<tr>
<td>3.</td>
<td>Figure 2.2</td>
<td>Caprolactam manufacturing steps</td>
<td>46</td>
</tr>
<tr>
<td>4.</td>
<td>Figure 2.3</td>
<td>Wastewater treatment schematic diagram</td>
<td>47</td>
</tr>
<tr>
<td>5.</td>
<td>Figure 2.4</td>
<td>Batch Reactor</td>
<td>48</td>
</tr>
<tr>
<td>6.</td>
<td>Figure 2.5</td>
<td>Continuous reactor</td>
<td>49</td>
</tr>
<tr>
<td>7.</td>
<td>Figure 2.6</td>
<td>Residual COD and DO vs Aeration Time</td>
<td>54</td>
</tr>
<tr>
<td>8.</td>
<td>Figure 2.7</td>
<td>Oxygen uptake rate and endogenous respiration rate during the Determination biodegradation of caprolactam wastewater</td>
<td>55</td>
</tr>
<tr>
<td>9.</td>
<td>Figure 2.8</td>
<td>Ammonia nitrogen consumption during biodegradation of caprolactam Wastewater (batch process)</td>
<td>56</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Figure 3.1</td>
<td>Effect of F/M on COD reduction</td>
<td>78</td>
</tr>
<tr>
<td>11.</td>
<td>Figure 3.2</td>
<td>Settling characteristics at various F/M values</td>
<td>79</td>
</tr>
<tr>
<td>12.</td>
<td>Figure 3.3</td>
<td>Effect of influent COD on effluent COD</td>
<td>80</td>
</tr>
<tr>
<td>13.</td>
<td>Figure 3.4</td>
<td>Effect of HRT on COD Removal efficiency</td>
<td>82</td>
</tr>
<tr>
<td>14.</td>
<td>Figure 3.5</td>
<td>Effect Of Ph On Oxygen Uptake Rate</td>
<td>84</td>
</tr>
<tr>
<td>15.</td>
<td>Figure 3.6</td>
<td>Effect Of Airflow Rate On Cod Removal Efficiency</td>
<td>86</td>
</tr>
<tr>
<td>16.</td>
<td>Figure 3.7</td>
<td>Toxicity of hydroxyl amine sulphate on the oxygen uptake of sludge</td>
<td>88</td>
</tr>
<tr>
<td>17.</td>
<td>Figure 3.8</td>
<td>Toxicity of hydroxyl amine sulphate on COD reduction</td>
<td>89</td>
</tr>
</tbody>
</table>
CHAPTER 4

17. Figure 4.1 Biodegradation of cyclohexanone 113
18. Figure 4.2 Cyclohexanol Metabolic Pathway 114
19. Figure 4.3 Caprolactam Metabolic Pathway 115
20. Figure 4.4 Biodegradation of cyclohexanol 117
21. Figure 4.5 Biodegradation of caprolactam 119
22. Figure 4.6 OUR determination by BOD method 120
23. Figure 4.7 Biodegradation of anone and anol as binary substrate 122
24. Figure 4.8 Degradation of anol in presence of 150 mg/l anone 123
25. Figure 4.9 Degradation of anol in presence of 200 mg/l anone 124
26. Figure 4.10 Degradation of anol in presence of 350 mg/l anone 125
27. Figure 4.11 Effect of HRT on substrate and COD reduction 127

CHAPTER 5

28. Figure 5.1 Nitrification in plant wastewater 144
29. Figure 5.2 Nitrification in synthetic wastewater containing Caprolactam 146
30. Figure 5.3 Effect of F/M ratio on Nitrification 149
31. Figure 5.4 Effect of Nitrification on the pH 151
32. Figure 5.5 Growth characteristics at pH 3.0 152
LIST OF PUBLICATIONS

