LIST OF FIGURES

Fig.1.1: Schematic presentation of *M. tuberculosis* H37Rv genome map. The outer circle shows the scale in Mb, with 0 representing the origin of replication. The first ring from the exterior denotes the positions of stable RNA genes (tRNA blue and others in pink) and the direct repeat region (pink cube); the second ring inwards shows the coding sequence by strand (clockwise, dark green; anticlockwise, light green); the third ring depicts repetitive DNA (Insertion sequences, orange; 13E12 REP family, dark pink; prophage, blue); the fourth ring shows the positions of the PPE family members (green); the fifth ring shows the PE family members (purple excluding PGRS); and the sixth rings shows the positions of the PGRS sequences (dark red). The histogram (centre) represents G + C content, with <65% G + C in yellow and >65% G + C in red (Cole et al., 1998).

Fig.1.2: Chemical Structure of Effective TB Drugs

Fig.1.3: Special bacterial populations and TB chemotherapy

Fig.1.4: Diagrammatic presentation of Mtb cell wall

Fig.1.5: Alanine racemase (EC: 5.1.1.1.), D-alanine-D-alanine ligase (EC: 6.3.2.4) and D-alanine-D-alanyl carrier protein ligase (EC: 6.1.1.13) are involved in D-alanine metabolism and are linked to peptidoglycan synthesis.

Fig.1.6: Effect of quinolone drugs on DNA Gyrase

Fig.1.7: Chemical Structure of Fluoroquinolones Drugs

Fig.2.1: Illustration of a chemical reaction with and without enzyme. The red curve illustrates a reaction without any enzyme activity. As illustrated, if an enzyme acts catalytically at the chemical reaction (blue curve), the necessary activation energy to start the reaction is significantly lower.

Fig.2.2: Illustration of a chemical reaction involving an enzyme. After a substrate has bound (first and second picture from the left) a chemical reaction takes place. After the reaction is completed, the products are released and the enzyme is ready for the next reaction (first and second picture from the right).
Fig. 2.3: Illustration of drug activity upon an enzyme. Because of the bound drug (left picture), the natural substrate can not bind and the enzymatic process is stopped (right picture).

Fig. 2.4: Schematic representation of the signal pathway of hormones. If a cell has the corresponding receptor to a hormone, then it can bind tightly to the receptor and a signal is transferred into the cell (here to the cell core).

Fig. 2.5: Schematic illustration of how an ion-channel is opened by an induced conformational change of a receptor. Before the messenger binds to the receptor, the receptor structure hinders ions to flow through the ion channel. After the messenger has bound, the receptor changes its conformation, which leads, in this example, to an opening of the ion-channel.

Fig. 2.6: Sketch of how an induced conformational change of a receptor structure enables enzymatic reactions to take place. Before a messenger is being bound to a receptor, the active site of a neighboring enzyme in the cell interior is closed. If the messenger is bound to the receptor, the receptor changes its conformation and induces an additional conformational change of the enzyme. As a result the active site of the enzyme opens and substrates in the cell interior can start a catalytic reaction.

Fig. 2.7: Illustration of possible side chain flexibility, as used by our program FlexScreen. FlexScreen allows, for example, the side chain arginine a maximum of three degrees of freedom: three dihedral angles are allowed to be changed. Possible dihedral angles depend on low energy interactions of the side chain with itself and the environment.

Fig 3.1 Diagrammatic representation of a) α helix and b) β sheet

Fig 3.2 Ramachandran plots for a variety of structural elements. Psi and Phi values of residues are falling within -180 to +180 degrees.

Fig 3.3 Systematic presentation of levels of protein structure

Fig. 3.4 Example of a multiple alignment of some proteins from the SH2 family made with ClustalX. The stars at the top correspond to conserved residues among all present proteins and the dots indicate conservative substitutions between amino acids with similar properties like hydrophobicity (also visible in colour code). The bars at the bottom show a value for the similarity of the amino acids located at the same position (identity=100 %).
The gaps within the 1JWO sequence correspond to deletions of amino acids located in loop regions if compared to the other homologs.

Fig. 3.5: The PAM250 similarity matrix (Altschul 1991) assigns a certain exchange value to every possible amino acid substitution. They are proportional to the tenfold logarithm of the observed mutation rate among sequences with an overall identity of more than 20% divided by the mutation rate expected from random amino acid frequencies. High positive and negative matrix values correspond therefore to high and low possibilities for the respective substitution within homologous proteins.

Fig 3.6. Steps involved in the prediction of protein structure by homology modeling

Fig 3.7 Accuracy and application of protein structure models. Different ranges of applicability of comparative protein structure modeling, threading, and denovo prediction; the corresponding accuracy of protein models; and their sample applications are shown (Baker and Sali, 2001).

Fig. 3.8: Typical motional timescales for physical processes.

Fig 3.9 Gromacs steps for performing MD simulations.

Fig 3.10: A Sample one dimensional fitness function illustrating local minima labelled 1,2,3.

Fig. 3.11: Diagrammatic presentation of docking box and grid points

Fig 3.12: The size and location of docking sphere. The centre coordinates are (4.00, 16.1, and 6.70) in X Y Z directions, respectively with 20 A radius has been used in docking calculations in GOLD.

Fig 5.1. Alignment file with query sequence and template

Fig: 6.1: Multiple sequence alignment of Mtb-DNA gyrase with crystal structure of E. coli topoisomerase (1AB4) and with topoisomerase of Streptococcus (2INR) the gap (-) represent the deleted regions, star (*) represents the conserved regions in the Figure.

Fig.6.2: Dendogram of DNA gyrase in Mtb, Stahylococcus and E.coli

Fig.6.3: 3D model of Mtb-DNA Gyrase

Fig.6.4: Shows from the MD simulation of Mtb-DNA Gyrase, the time evolution of RMSD Fig.6.5: Fluctuation of Amino acids of Mtb-DNA Gyrase at 5000ps

Fig.6.5: Fluctuation of Amino acids of Mtb-DNA Gyrase at 5000ps

Fig.6.6: Ramachandrans plot of Mtb-DNA Gyrase
Fig. 6.7: Mtb-DNA Gyrase Overall model quality (Left) and Local model quality (Right)

Fig. 6.8: Secondary structure of Mtb-DNA Gyrase

Fig. 6.9: Active site amino acids (Red sticks) of Mtb-DNA Gyrase

Fig. 6.10: Electrostatic surface with active site residues and the extreme left with electrostatic potentials proposed binding site (Blue + charge and Red - charge). These figures were generated with Pymol (DeLano, 2002).

Fig. 6.11: A strong hydrogen bonding of Gatifloxacin with Mtb-DNA Gyrase Active site residues

Fig. 6.12: A strong hydrogen bonding of Balofloxacin with Mtb-DNA Gyrase Active site residues

Fig. 6.13: A strong hydrogen bonding of Grepafloxacin with Mtb-DNA Gyrase Active site residues

Fig. 6.14: Docking interaction of GTF best analog GTF -18 with Mtb-DNA Gyrase active site residues

Fig. 6.15: Docking interaction of TP best analog GTF-21 with Mtb-DNA Gyrase active site residues

Fig: 7.1. Catalytic mechanism of Alanine racemase

Fig: 7.2. Sequence alignment of crystal structure Alanine racemase with Mtb-Alr model based on sequence homology with clustalw algorithm. The identical residues in all aligned sequences are indicated with star symbol. The deleted residues represented with pink colour rectangular and inserted residues are represented as blue rectangular box from Sp-Alr model.

Fig: 7.3. Phylogenetic trees based on the multiple alignment of Mtb-Alr with Alanine racemase from B.stearothermophilus(1SFT), B. subtilis (2SFP), G.Stearothermophilus (1EPV), G. stearothermophilus (1XQK), B. anthracis (3HAL,2VD9 and 2VD8), O.eenipsu-1 (3HURand3CO8), B.henselae(3KW3), P.aeruginosa(1RCQand2ODO), E.coli(3B8W,3B8V,3B8U,2RJGand3B8T) M.tuberculosis (1XFC) and S.lavendulae (1VFH).

Fig: 7.4. The 3D model of Mtb-Alr showing different helices (cyan) and sheets (Pink) [http://delsci.com/rel/099].

Fig:7.5. The Homology model of Mtb-Alr. The alpha helix and helix is represented in light green and orange color cylinders, the beta sheets represented by cyan color. [http://www.ks.uiuc.edu/Research/vmd/]
Fig: 7.6. Ramachandran plot for Sp-Air model produced by PROCHECK. (www.biochem.ucl.ac.uk/~roman/procheck/procheck.html)

Fig: 7.7. Main chain parameters of Mtb-AIr model (solid squares) generated by PROCHECK.

Fig: 7.8. Side chain parameters of Sp-Air model (solid squares) generated by PROCHECK.

Fig: 7.9. ProSA-web Z-scores and energy of 1XFC (A and B) and Mtb-AIr model (C and D). All protein chains in PDB determined by X-ray crystallography (light blue) or NMR spectroscopy (dark blue) with respect to their length.

Fig: 7.10. Amino acids involved in different secondary structural conformation Mtb-AIr model analyzed from PDBSUM.

Fig: 7.11. Domain structure of Mtb-AIr model (MotifScan and pfam graphical output). The Mtb-AIr domain model represented schematically as green colored N-terminal domain with predicted active site and red colored C-terminal domain. On the next line, a plot of the predicted surface accessibility at each residue. The ruler at the bottom marks numbered intervals along the protein sequence (left side). The 3D model of Mtb-AIr with N-terminal and C-terminal ends (Right side).

Fig: 7.12. The active site residues of Mtb-AIr model show as red circle. The red circle zoomed area clearly shows the active site amino acids (stick representation). (http://delsci.com/rel/099)

Fig: 7.13. Active site analysis of Sp-Air. Super position of Mtb-AIr model with 1XFC shows, the superposition of the Arg-143, His172, Ser-210, Arg-225 and Tyr-359 amino acids Mtb-AIr with 1XFC amino acids respectively, 1XFC (Light green) Mtb-AIr (Cyan).

Fig: 7.14. Different views of active site amino acids of Mtb-AIr model. From upper right to left: a cartoon active site residues; a surface with active site residues and the extreme left with electrostatic potentials proposed binding site (Blue + charge and Red − charge). These Figs were generated with Pymol (DeLano, 2002).

Fig: 7.15. The ion pairs and salt bridges of Mtb-AIr model determined from Jmol first glance online server. (Salt bridge residues are represented in line form, ion pair residues are depicted by sticky form. (http://firstglance.jmol.org/).

Fig: 7.16. A) Time (X-axis) Vs Energy (KJ/Mol)^1 (Y-Axis)).
B) Time (X-axis) Vs RMSD-nm (Y-Axis).
C) Total protein (Residue (X-axis) and nm (Y-axis)).
D) C-alpha chain of protein (Residue (X-axis) and nm (Y-axis)).
E) Backbone of protein (Residue (X-axis) and nm (Y-axis)).
F) Main chain of protein (Residue (X-axis) and nm (Y-axis)).
G) Side chain of protein (Residue (X-axis) and nm (Y-axis)).

Fig: 7.17. A - Chemical and Molecular structures of DCS-1 to DCS-3.
Fig: 7.17. B - Chemical and Molecular structures of DCS-4 to DCS-6.
Fig: 7.17. C - Chemical and Molecular structures of DCS-7 to DCS-10.
Fig: 7.17. D - Chemical and Molecular structures of DCS-10 to DCS-12.
Fig: 7.17. E - Chemical and Molecular structures of DCS-13 to DCS-15.
Fig: 7.17. F - Chemical and Molecular structures of DCS-16 to DCS-18.
Fig: 7.17. G - Chemical and Molecular structures of DCS-19 to DCS-21.
Fig: 7.17 H - Chemical and Molecular structures of DCS-22 to DCS-24.

Fig: 7.18. Binding domain showing electrostatic potential surface of Mtb-Alr model (blue +ve and red -ve) with interactions of ligands. [http://delscl.com/rel/099].

Fig: 7.19. Binding interactions of ligands with active site amino acids of catalytic domain of Mtb-Alr model.


Fig: 7.21. Interaction of natural substrate L-alanine at Mtb-Alr model active site domain (red circle is zoomed right side) with Asp-138, Ser-139, Arg-143, Met-141 and His-172.

Fig: 7.22. Interaction of inhibitor D-cycloserine at Mtb-Alr model active site domain (red circle is zoomed right side) with Arg-143 and His-172.