LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title of the figure(s)</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Map showing continental manganese ore deposits in India.</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Accessibility and location map of district Vizianagram, (A.P).</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Geological map of the study area.</td>
<td>34</td>
</tr>
<tr>
<td>2.3</td>
<td>Field photographs of:</td>
<td>43</td>
</tr>
<tr>
<td>2.3a</td>
<td>Folded calc-granulite, near Sadanandapuram,</td>
<td></td>
</tr>
<tr>
<td>2.3b</td>
<td>Pegmatitic Intrusion in khondalites near Perumali,</td>
<td></td>
</tr>
<tr>
<td>2.3c</td>
<td>Patchy Charnockite gneiss on Garbham road, Garividi,</td>
<td></td>
</tr>
<tr>
<td>2.3d</td>
<td>Ptygmatic folds in Calc-granulite at Garividi,</td>
<td></td>
</tr>
<tr>
<td>2.3e</td>
<td>Gneissic banding and mealmnocratic bands in Garnet Sillimanite gneiss at Kodur</td>
<td></td>
</tr>
<tr>
<td>2.3f</td>
<td>Weathered Khondalite and laterites, Garbham block, district Vizianagram, (A.P.)</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Hand specimens of:</td>
<td>44</td>
</tr>
<tr>
<td>2.4a</td>
<td>Feldspathic quartzite from Devada;</td>
<td></td>
</tr>
<tr>
<td>2.4b</td>
<td>Weathered garnetiferous biotite Gneiss, Koduru;</td>
<td></td>
</tr>
<tr>
<td>2.4c</td>
<td>Garnetiferous quartzite from Garividi;</td>
<td></td>
</tr>
<tr>
<td>2.4d</td>
<td>Garnetiferous biotite Gneiss, Koduru;</td>
<td></td>
</tr>
<tr>
<td>2.4e</td>
<td>Scapolite in Clac-granulite from Garividdi;</td>
<td></td>
</tr>
<tr>
<td>2.4f</td>
<td>Pegmatitic quartzite from Chipurupalle block, district Vizianagram, (A.P.)</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Photomicrograph showing:</td>
<td>43</td>
</tr>
<tr>
<td>2.5a</td>
<td>Feldspathic quartzite from Devada,</td>
<td></td>
</tr>
<tr>
<td>2.5b</td>
<td>Photomicrograph feldspathic quartzite from Devada,</td>
<td></td>
</tr>
<tr>
<td>2.5c</td>
<td>Photomicrograph feldspathic quartzite from Devada,</td>
<td></td>
</tr>
<tr>
<td>2.5d</td>
<td>Photomicrograph feldspathic quartzite from Devada,</td>
<td></td>
</tr>
<tr>
<td>2.5e</td>
<td>Photomicrograph feldspathic quartzite from Devada,</td>
<td></td>
</tr>
<tr>
<td>2.5f</td>
<td>Photomicrograph feldspathic quartzite from Devada,</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Field photographs showing,</td>
<td>70</td>
</tr>
<tr>
<td>3.1a</td>
<td>Water logged manganese quarry, Sadanandapuram block;</td>
<td></td>
</tr>
<tr>
<td>3.1b</td>
<td>Manual sieving of low grade manganese ore, Central Garbham;</td>
<td></td>
</tr>
<tr>
<td>3.1c</td>
<td>Weathered Mn-Si-Carbonate and supergene manganese ore, Devada, district Vizianagram, (A.P.)</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Filed photographs showing:

3.2a Mined out primary manganese ores, Garbham block;
3.2b Leaching of Ca in the weathering zone of study area;
3.2c Lenses and pockets of manganese within weathered khondalites in Duvvam;
3.2d Lumps of secondary Mn ore in Lithomarge in Salur quarries;
3.2e Mn-Si-Carbonate ore at Chipurupalle quarries;
3.2f Active open cast mining in the Chipurupalle block, district Vizianagram, (A.P).

3.3 Well developed hand specimens of:

3.3a-b Mammillated pyrolusite from Kotakara quarry, Garbham block.
3.3c Secondary pyrolusite with quartzite from Pallapgudi quarry, Garbham block.
3.3d Botryoidal psilomelane from Digva mine, Salur block.
3.3e Botryoidal psilomelane from Perumali quarry.
3.3f Banded braunite with pyrolusite from Pallapgudi quarry, Garividi block.

3.4 Well developed hand specimens of,

3.4a Mn-silicate-carbonate ore from Duvvam, Sadanandapuram bloc;
3.4b-c Banded manganese within quartzite from Kottakarra quarry, Garbham block.
3.4d Weathered pyrolusite from Mangotope mine, Garbham block;
3.4e Ferrugenous manganese ore from Perumali block, loose and soft wad from digva mine, salur block.
3.4f Loose and soft wad from Aithemvalasa quarry, Bangaruvalasa block, district Vizianagram, (A.P).

4.1 Photomicrographs showing,

4.1a Alternate compositional lamellae of rhodochrosite and supergene psilomelane and Pyrolusite in primary Mn ore Central Garbham mine
4.1b Distorted spherulites of rhodochrosite with secondary pyrolusite in the Primary Mn ore, Kotakara quarry;
4.1c Idioblasts of Mn-silicates-spessartite and rhodonite in the matrix of secondary pyrolusite and psilomelane, in primary Mn ore, Pallapgudi quarry district Vizianagram, (A.P).

4.2 Photomicrographs showing,

4.2a Etched jacobsite with supergene pyrolusite in secondary ore from Devada quarry;
4.2b Lamellae of hausmannite and jacobsite with pyrolusite in primary Mn ore Duvvam quarry.
4.2c Diffused boundaries of jacobsite and hausmannite in the primary Mn ore Sadanandapuram quarry, district Vizianagram.
4.3 XRD images showing,
4.3a Pyrolusite, rhodochrosite, apatite, quartz, psilomelane in primary Mn ore
 Central Garbham quarry;
4.3b Spessartite, pyrolusite, rhodonite, pyroxmangite and quartz in secondary
 Mn ore, Pallapgudi quarry,
4.3c Quartz, jacobsite, hausmannite, magnetite and pyrolusite in the primary
 Mn ore, Duvvam quarry, district Vizianagram, (A.P).

4.4 Photomicrographs showing,
4.4a Pyrolusite, rhodochrosite, apatite, quartz, psilomelane in primary Mn ore
 Central Garbham quarry,
4.4b Spessartite, pyrolusite, rhodonite, pyroxmangite and quartz in secondary
 Mn ore, Pallapgudi quarry.
4.4c Quartz, jacobsite, hausmannite, magnetite and pyrolusite in the primary
 Mn ore, Duvvam quarry, district Vizianagram, (A.P).

4.5 Photomicrographs showing,
4.5a Etched rhodochrosite, bixbyite with supergene pyrolusite in the secondary Mn ore
 Mangotope quarry;
4.5b Alternate compositional lamellae of rhodochrosite and braunite in ore
 primary ore Mangotope quarry
4.5c Granoblastic braunite and bixbyite with a vein of cryptomelane in ore
 Mangotope quarry, district Vizianagram, (A.P).

4.6 Photomicrographs showing,
4.6a Supergene psilomelane, pyrolusite and gangue in secondary Mn ore,
 Perumali,
4.6b Vein of secondary pyrolusite and cryptomelane in braunite and
 rhodochrosite in secondary Mn ore, Bangaruvalasa ;
4.6c Well-developed ramsdellite, psilomelane, cryptomelane and quartz with
 gangue in secondary Mn ore, Avagudem, district, Vizianagram (A.P).

4.7 XRD images showing,
4.7a Supergene psilomelane, pyrolusite, apatite and quartz in secondary Mn
 ore Garividi,
4.7b Braunite, bixbyite cryptomelane and rhodochrosite in Primary Mn ore
 from Mangotope quarry ,
4.7c Psilomelane, pyrolusite, ramsdellite and quartz in secondary Mn ore
 Avagudem, Vizianagram (A.P).

4.8 SEM images showing,
4.8a Grain boundary replacement texture of spessartite (black) with
 pyrolusite (white) in primary Mn ore , Pallapgudi quarry,
4.8b Intergrowth texture in Vredenburgite in primary Mn ore from Duvvam
 quarry,
4.8c Fissure replacement and layered structure of Mn-Silciate carbonate ore
 from Garbham, district Vizianagram, (A.P).
4.9 SEM images showing,
4.9a Closely folded lamellae of colloformic pyrolusite in the secondary Mn ore, Garividi block.
4.9b Patches of carbonate remnant in the primary braunite bearing ore, Mangotope quarry, Chipurupalle block.
4.9c Honey comb structure of secondary Mn ore, from Perumali quarry, Vizianagram.

5.1 Bar charts showing the weight percentage of (a) SiO₂ (b) Al₂O₃ (c) MnO (d) Fe₂O₃ (e) FeT₂O₃ (f) TiO₂ (g) P₂O₅ (h) CaO (i) MgO (j) K₂O and (k) Na₂O and (l) H₂O in the primary ores (1-3) from Bangaruvalasa and (4-6) from Garividi block, Vizianagram, (A.P).

5.2 Bar charts showing the weight percentage of (a) SiO₂ (b) Al₂O₃ (c) Fe₂O₃ and (d) MnO in the secondary manganese ores, district Vizianagram, (A.P).

5.3 Bar charts showing the weight percentage of (a) Fe₂O₃, (b) TiO₂ (c) P₂O₅ and (d) CaO in the secondary manganese ores, district Vizianagram, (A.P).

5.4 Bar chart showing the wt% of (a) MgO, (b) BaO, (c) Na₂O, and (d) K₂O in the secondary manganese ores, district Vizianagram, (A.P.).

5.5 Bar chart and Variation diagram showing the comparative weight percentage of;
5.5a SiO₂, Al₂O₃ and MnO in the secondary manganese ores, district Vizianagram, (A.P).
5.5b SiO₂, Al₂O₃ and MnO in the secondary manganese ores, district Vizianagram, (A.P).

5.6 Bar chart and Variation diagram showing the comparative weight percentage of;
5.6a SiO₂, Al₂O₃, FeO, MnO and TiO₂ in the secondary manganese ores, district Vizianagram, (A.P).
5.6b MnO and FeO, Fe₂O₃ in the secondary manganese ores, district Vizianagram, (A.P).

5.7 Bar chart and variation diagram showing the comparative weight percentage of;
5.7a MnO, CaO and MgO in the secondary manganese ores, district Vizianagram, (A.P).
5.7b MnO, CaO and MgO in the primary and secondary manganese ores, district Vizianagram, (A.P).

5.8 Bar chart and variation diagram showing the comparison and Quantitative distribution of;
5.8a CaO, Na₂O and K₂O in the primary and secondary manganese ores.
5.8b CaO, Na₂O and K₂O in the primary and secondary manganese ores, district Vizianagram, (A.P.)
5.9a-b Variation diagrams showing the quantitative variation of major oxides in secoondary manganese ores (7-30) district Vizianagram, (A.P).

5.10 Fe-Mn-Si ternary plot (After; Toth, 1980), showing near hydrogenous-diagenetic origin of the manganese ores of district Vizianagram, (A.P).

5.11 Ternary plot showing the Mn-Fe-Al ternary plot (After; Choi and Hariya, 1992), showing hydrogeous origin of the manganese ores of district Vizianagram, (A.P).

5.12 Fe-Mn-(Ni+Cu+Co) ternary plot (After; Bonatti, et al., 1972), for the manganese ores of Vizianagram, (A.P).showing their detrital-hydrogenous origin.

5.13 Si-Al discrimantion diagram (After; Peters 1988), showing the Mn rich, Al, Si poor manganese ores, district Vizianagram, (A.P).

5.14 Na-Mg discrimantion diagram showing the shallow shelf water genesis of the manganese ores, district Vizianagram, (A.P).

5.15 Correlation coefficients (r) between (a) Al-Ni, (b) Al-Cu, (c) Al-Li, (d) Al-Pb (e) Mn-Ca (f) Mn-Ba (f) Mn-Ni and Mn-Li in the primary ores (red symbol) and secondary ores (blue symbol) district Vizianagram, (A.P).

5.16 Correlation coefficients (r) between (a) Al-Ni, (b) Al-Cu, (c) Al-Li, (d) Al-Pb (e) Mn-Ca (f) Mn-Ba (f) Mn-Ni and Mn-Li in the primary ores (red symbol) and secondary ores (blue symbol) district Vizianagram, (A.P).

5.17 Correlation coefficients (r) between (a) Mn-Pb, (b) FeT-Mn, (c) FeT-P, (d) FeT-Mg (e) FeT-Na (f) FeT-Ba (g) FeT-Co and (h) FeT-Ni in the primary (red symbol) and secondary (blue symbol) manganese ores of district Vizianagram, (A.P).

5.18 Correlation coefficients (r) between (a) FeT-Sr (b) FeT-Mo (c) FeT-Zn (d) FeT-Zr (e) FeT-Pb (f) FeT-Sr (g) Ti-P and (h) Ti-Na in the primary ores (red symbol) and secondary ores (blue symbol) district Vizianagram, (A.P).

5.19 Correlation coefficients (r) between (a) Ti-Cu, (b) Ti-V, (c) Ti-Zn, (d) Na-P (e) P-Cu (f) P-V (f) P-Li (g) P-Li (h) P-Zn in the primary ores (red symbol) and secondary ores (blue symbol) district Vizianagram, (A.P).

5.20 Correlation coefficients (r) between (a) Ca-Co, (b) Ca-Pb (c) Mg-K (d) Mg-Co (e) Ca-Zn (f) Mg-Na (g) Mg-Sr and (h) Mg-Zn in the primary ores (red symbol) and secondary ores (blue symbol) district Vizianagram, (A.P).
5.21 Correlation coefficients (r) between (a) Mg-Zr (b) Ba-Cr (c) Ba-Mo (d) Ba-Pb (e) Na-Co (f) Na-V (g) Na-Zr (h) Ba-Pb in the primary ores (red symbol) and secondary ores (blue symbol) district Vizianagram, (A.P).

5.22 Correlation coefficients (r) between (a) K-Ni (b) K-Sr (c) K-Mo and (d) K-Pb in the primary ores (red symbol) and secondary ores (blue symbol) district Vizianagram, (A.P).

5.23 Bar charts showing the relative concentration (in ppm) of (a) Ni (b) Cu (c) Co, (d) Cr, (e) Sr, (f) Li, (g) Pb (h) Zn (i) Zr (j) V in the primary ores of district Vizianagram, (A.P).

5.24 Bar charts showing the relative concentration (in ppm) of (a) Ni (b) Cu (c) Co, (d) Cr, (e) Sr, (f) Li, (g) Pb (h) Zn (i) Zr (j) V in the secondary ores of district Vizianagram, (A.P).

5.25 Bar charts showing the relative concentration of selected trace elements in the;
5.25a Primary ores from Bangaruvalasa and Garividi blocks
5.25b Secondary manganese ores from Kotakara block
5.25c Secondary manganese ores from Perumali block, district, Vizianagram, (A.P).

5.26 Bar charts showing the relative concentration of selected trace elements (in ppm) in the;
5.26a Primary ores from Bangaruvalasa and Garividi blocks,
5.26b Secondary manganese ores from Kotakara block,
5.26c Secondary manganese ores from Perumali block, district Vizianagram, (A.P).

5.27 Variation diagram of selected trace elements;
5.27a Primary manganese ores from Bangaruvalasa and Garividi blocks, district Vizianagram, (A.P).
5.27b Secondary manganese ores, Kotakara, Perumali, Sadanandapuram, Salur and Garividi blocks, district Vizianagram, (A.P).

5.28 Variation diagram of selected trace elements in secondary manganese ores of;
5.28a Garbham block, district Vizianagram, (A.P).
5.28b Koduru block, district Vizianagram, (A.P).
5.28c Garividi block, district Vizianagram, (A.P).

5.29 Bar charts showing the relative concentration of selected trace elements ppm in the;
5.29a Perumali block, district Vizianagram, (A.P).
5.29b Salur block, district Vizianagram, (A.P).
5.29c Chipurupalle block, district Vizianagram, (A.P).
5.30 Discrimination diagram of Ni+Co+Cu Vs. Ni+Cu of the primary and secondary manganese ores, district Vizianagram, (A.P).

5.31 Ternary diagram Ni-Zn-Co (After; Choi and Hariya, 1992) showing the hydrogenous nature of the the primary and secondary manganese ores, district Vizianagram, (A.P).

5.32 Discrimination diagram (After; Toth, 1980) of Ni+Co+Cu Vs. Co/Zn of the primary and secondary manganese ores, district Vizianagram, (A.P).

5.33 Discrimination diagram of Ni-Co-Zn (After Choi and Hariya, 1992) of the primary ores and secondary ores, district Vizianagram, (A.P).

5.34 Correlation coefficients of (a) Ni-V (b) Ni-Li (c) Ni-Pb and (d) Ni-Pb and (e) Cu-V (f) Cu-Li (g) Co-Pb and (h) Co-Zn in the primary and secondary ores, district Vizianagram, (A.P).

5.35 Correlation coefficients of (a) Cr-Zr (b) Li-Pb (c) Mo-Zr and (d) Sr-Zr in the primary and secondary ores, district Vizianagram, (A.P).

6.1 Bar charts showing wt% of major oxides in four samples of; Garnetiferous Quartzites GQT1-GQT4; Garnet-Silimanite Gneiss GSG1-GSG4; Cac-silicate-Granulites CSG1-CSG4 and Charnockites CHR1-CHR4, district Vizinagram, (A.P).

6.2 Bar charts showing average wt% of major oxides in Charnockites (CHR1-CHR4), Garnetiferous Quartzites (GQT1-GQT4); Garnet-Silimanite Gneiss (GSG1-GSG4) and Cac-silicate-Granulites (CSG1-CSG4) district Vizianagram, (A.P).

6.3 Variation diagram showing the variation of average wt% of major oxides in Charnockites (CHR), Garnetiferous Quartzites (GQT); Garnet-Silimanite Gneiss (GSG) and Calc-Silicate Granulites (CSG) district Vizianagram, (A.P).

6.4 Bar charts showing comparative wt% of major oxides in (a-c) Calc-Silicate Granulite (CSG), (d-f) Garnetiferous quartzites (GQT), (g-i) Charnockites (CHR) and (j-l) Calc-Silicate Granulite (CSG) from of district Vizianagram, (A.P).

6.5 Scatter diagrams of (a) SiO₂ Vs Al₂O₃; (b) SiO₂ Vs Fe₂ and (c) SiO₂ Vs CaO in the khondalites (GQT, GSG, CSG) and charnockites (CHR) district Vizianagram, (A.P).

6.6 Scatter diagrams of (a) SiO₂ Vs TiO₂; (b) SiO₂ Vs P₂O₅ and (c) SiO₂ Vs MgO in the khondalites (GQT, GSG, CSG) and charnockites (CHR) district Vizianagram, (A.P).
6.7 Scatter diagrams of (a) SiO₂ Vs MnO; (b) SiO₂ Vs K₂O and (c) SiO₂ Vs Na₂O in the khondalites (GQT, GSG, and CSG) and charnockites (CHR) district Vizinagram, (A.P).

6.8 Si/Al discrimination diagram for the khondalites (GQT, GSG, and CSG) and charnockites (CHR), district Vizinagram, (A.P).

6.9 Binary plot of Log(Fe₂O₃/K₂O) vs Log (SiO₂/Al₂O₃) (After; Roddaz et al. 2006), showing the Shale-Arkose sequence for the khondalites (GQT, GSG, CSG) and charnockites (CHR) district Vizinagram, (A.P).

6.10 K₂O/Al₂O₃ vs Na₂O/Al₂O₃ plot (After; Chako. et. al (1972) of khondalites (GQT, GSG, CSG) and charnockites (CHR) district Vizinagram showing similarity with sedimentary and metasedimentary rocks.

6.11 SiO₂ Vs K₂O/Na₂O tectonic discrimination diagram (After; Roser and Korsch, 1986) showing PCM type of setting for CHR, GQT and GSG members and wide OIA scatter of CSG members of the khondalites and charnockites district Vizinagram, (A.P).

6.12 Fe₂O₃+MgO Vs Al₂O₃/SiO₂ tectonic discrimination diagram (After; Bhatia, 1983) showing the PCM type of setting for CHR and GQT members and wide scatter of the other khondalites, district Vizianagram, (A.P).

6.13 Fe₂O₃+ MgO Vs Al₂O₃/ (CaO+Na₂O) tectonic discrimination diagram (After; Bhatia, 1983) showing the PCM type of setting for CHR and GQT members and wide scatter of the other khondalites, district Vizianagram, (A.P).

6.14 Fe₂O₃+ MgO Vs TiO₂ tectonic discrimination diagram (After; Bhatia, 1983) showing the PCM type of setting for CHR and GQT members and wide scatter of the other khondalites, district Vizianagram, (A.P).

6.15 Fe₂O₃ + MgO Vs K₂O + Na₂O tectonic discrimination diagram (After; Bhatia, 1983) for the khondalites (GQT, GSG, and CSG) and charnockites (CHR), district Vizianagram, (A.P).

6.16 FeO + MgO vs K₂O + (Na₂O/K₂O) plot (After; Chacko et al, 1992) showing the PAAS and Arkosic compositional similarity of the Khondalites and charnockites, district Vizianagram, (A.P).

6.17 K/Al Vs Na/Al discrimination plot (After; Saupe and Vegas, 1987) showing the Shale-Greywacke compositional similarity of the Khondalites, district Vizianagram, (A.P).
6.18 Ternary plot of Na-Ca-K showing the calc-alkaline trend of charnockites and trondhjemite trend of khondalites, district Vizianagram, (A.P).

6.19 Ternary plot of CaO-(Fe+MgO)-Al₂O₃ (After; Wronkiewicz and Condie, 1989), showing typical metapelitic composition of the khondalites (GQT, GSG, CSG) and charnockites (CHR), district Vizianagram, (A.P).

6.20 Ternary diagram of Fe(t)-K₂O-Al₂O₃ (After; Wronkiewicz and Condie, 1989), showing compositional similarity between Tonalities-Granites-NASC and the khondalites and charnockites district Vizianagram, (A.P).

6.21 Molecular Al : (CaO-Na₂O) - K₂O diagram (After; After Bhatia, 1983), for the khondalites and charnockites, district Vizianagram, (A.P).

7.1 Hypothetical genetic models showing the genesis of the manganese ores of district, Vizianagram (A.P).