CONTENTS

Chapter-1 Introductory Aspects of Polymers

1.1 General Introduction
1.2 Classification of Polymers
1.2.1 Classification Based on structural isomerism
1.2.2 Classification Depending on Stereo isomerism
1.2.3 Classification According to Chemical Structure
1.2.4 Classification According to Natural occurrence of Synthesis
1.2.5 Thermosetting and Thermoplastic Polymers

1.3 Types of Polymerization
1.3.1 Addition Polymerization
1.3.2 Condensation Polymerization

1.4 Methods of Polymerization
1.4.1 Homogeneous Polymerization
1.4.2 Heterogeneous Polymerization
1.4.3 Ionic Polymerization
1.4.4 Co-ordination Polymerization

Chapter - 2 Structure of Polymers used in this work

2.1 Polymethyl Methacrylate
2.2 Polystyrene
2.3 Polyvinyl Acetate
2.4 Polyvinyl Chloride

Chapter - 3

3.1 Brief review of the experimental work carried on
 Thermal expansion Behavior of Polymeric materiel
3.2 Theoretical Evaluation of Thermal expansion using Van Der Waal’s volume

Chapter - 4 Experimental Techniques.

4.1 Ultrasonic Velocity Measurements - Single crystal interferometer
4.1.1 Ultrasonic Velocities Brief Account of Techniques
4.1.2 Effect of Diffraction in Velocity Measurements
4.1.3 Mechanical Assembly of the Ultrasonic Interferometer

4.2 Densities
4.2.1 Balancing column method
4.2.2 Buoyancy Method
4.2.3 Magnetic Float method
4.2.4 Dilatometer Method
4.2.5 Digital Densimeter
4.3 Excess Volumes
4.4 Heat Capacity
4.5 Interaction parameter
4.6 Isothermal Compressibility
4.7 Internal Pressure

5. Flory theory applies to Polymer Solutions

5.1 Statistical Thermodynamical theory due to Flory - method of evaluation of theoretical, excess function
5.2 Statistical Thermodynamical theory due to Flory - method of evaluation of excess functions of Polymer Solutions
5.2.1 Excess Volume V^E
5.2.2 Excess Enthalpy H^E
5.2.3 Excess Isothermal Compressibility b
5.2.4 Excess Internal Pressure π
5.2.5 Excess Cohesive Energy Density
5.2.6 Interaction Parameter
5.3 Application of Flory theory to Polymer solution and Binary liquid Mixtures
5.3.1 Polymer Solutions - Application of Flory theory
5.3.2 Binary Mixture - Application of Flory theory
5.3.3 Diversified studies on Polymer solutions

Chapter - 6 Application of Flory theory - Programming concepts

6.1 Programming in LOTUS
6.2 Work sheet of pure liquids and liquid Mixtures
6.3 Printing of Results.

Chapter - 7 Results and Discussion in Polymer solutions in Toluene and Dioxane

7.1 Thermal Expansion evaluated from Ven Der Waal's volume
7.2 Thermodynamic Parameters of Polymers and their solutions
7.2.1 Thermodynamic Behavior of Polystyrene solutions
7.2.2 Thermodynamic Behavior of PMMA Solutions
7.2.3 Thermodynamic Behavior of PVAc

7.3 Thermodynamic Properties of Blends

7.3.1 Thermodynamic Properties of PS+PMMA Blend
7.3.2 Thermodynamic Properties of PMMA+PVAC Blend