APPENDIX-1

Diagnostic Test

Name of the Student:-
Class:-
Marks: 25.
Time: 01:00 hr.

Note: 1) All questions are compulsory.
2) Each question has equal marks.

Part-A (Multiple Choices)

1) What is the equation of line passing through the points (1, 2) & (-2, 5). []
 a) \(y = x+3 \) b) \(y = -x+3 \) c) \(y = \frac{7}{3} x+1 \) d) \(y = 3x+3 \)

2) Which value of \(x \) is in the solution set of the inequality \(-2x+5>17\). []
 a) -8 b) -6 c) -4 d) 12.

3) If \(A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix} \) then trace of the matrix is []
 a) 12 b) 0 c) 6 d) 54

4) \(\int \frac{1}{a^2-x^2} \, dx = ? \) []
 a) \(\frac{1}{2a} \log \left(\frac{x+a}{x-a} \right) + c \)
 b) \(\frac{1}{2a} \log \left(\frac{a-x}{a+x} \right) + c \)
 c) \(\frac{1}{2a} \log \left(\frac{x-a}{x+a} \right) + c \)
 d) \(\frac{1}{2a} \log \left(\frac{a+x}{a-x} \right) + c \)

5) How many times of \(13 \times 16 \times 17 \) is \(8 \times 51 \times 52 \). []
6) In any square matrix $A = [a_{ij}]$, the value of the expression

$$a_{11}c_{21} + a_{12}c_{22} + a_{13}c_{23} + ... + a_{1n}c_{2n}$$

is

a) $|A|$
b) 0
c) $|A|^2$
d) 1.

7) If $p(x) = (x-a)(x-b)(x-c)\ldots(x-k)$, then coefficient of x^{26} is

a) 1
b) 26
c) 0
d) 11.

8) $\lim_{x \to 0} \frac{\tan(x^0)}{x} = ?$

a) $\pi/180$
b) $180/\pi$
c) 1
d) $\pi/360$.

9) Two fair coins are tossed at the same time. The probability of getting at least one head is

a) $1/2$
b) $3/4$
c) $1/4$
d) None.

10) The derivative of $f(x) = |x|$ at $x=0$ is:

a) 1
b) -1
c) 0
d) does not exist.

11) The map $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is

a) one-one
b) onto
c) both one-one and onto
d) neither one-one nor onto

12) The sum of all cube roots of unity is

a) 0
b) 1
c) -1
d) 2

13) If I is an identity matrix, then---

a) $I^n = 0$
b) $I^n = 1$
c) \(l^n = 1 \) if \(n \) even and \(-1\) if \(n \) is odd \hspace{1cm} d) none of these.

14) The greatest common divisor of 256 & 7 is \hspace{1cm} []
 a) 2 \hspace{1cm} b) 1 \hspace{1cm} c) 7 \hspace{1cm} d) 8.

15) \(\sum_{n=1}^\infty n^2 = \)
 \(a) \left(\frac{n(n+1)}{2} \right)^2 \hspace{1cm} b) \frac{n(n+1)(2n+1)}{2} \hspace{1cm} c) \frac{n(n+1)(2n+1)}{6} \hspace{1cm} d) \text{None of these} \)

Part-B (True or False)

1) Every continuous function is differentiable. \hspace{1cm} []

2) The equation of line through (2, -3) & parallel to x-axis is \(x = 2 \). \hspace{1cm} []

3) If a set \(X \) contains 15 elements, then its power set has \(15^2 \) elements \hspace{1cm} []

4) If \(f(x) = x^3 + 2x - 1 \) then the value of \(f(-1) \) is -4. \hspace{1cm} []

5) If \(A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \) then \(A \) is orthogonal matrix. \hspace{1cm} []

6) The series \(a + a^2 + a^3 + \ldots + a^n \) is Geometric. \hspace{1cm} []

7) The value of the limit \(\lim_{x \to 0} \sin \frac{1}{x} \) is one. \hspace{1cm} []

8) The modulus and argument of the complex number \(3 + \sqrt{3}i \) are \(\sqrt{12} \) & \(\frac{\pi}{3} \) respectively. \hspace{1cm} []

9) The function \(f(x, y) = \frac{x}{e^y} \) is homogeneous function of degree one. \hspace{1cm} []

10) The series \(\sum \frac{1}{x^n} \) is convergent. \hspace{1cm} []
APPENDIX-2

Achievement Test

Name of the Student:-

Class:-

Marks: 50. Time: 02:00 hr.

Note: 1) All questions are compulsory.
 2) Each question has equal marks.

Part- A

Multiple Choice Questions

1. If $AX=B$ is consistent with m equations in n variables and if rank of A is r then the solution of the system contains $[]$ parameters.
 a) m b) n c) $n-r$ d) $m-r$

2. If three lines form a triangle then equation of these three lines has $[]$
 a) No solution b) Exactly one solution
 c) Infinitely many solution d) None of these

3. If P_n is the set of polynomials of degree n then dim P_n is $[]$
 a) n b) less than n c) greater than n d) $n+1$

4. Let dim $V = n$ and S is any subset of V which always independent set then S contains $[]$
 a) n vectors b) less than n vectors c) more than n vectors d) none of these

5. A system of m equations with n unknowns ($n < m$) has $[]$
 a) No solution b) Exactly one solution
c) Infinitely many solution

d) None of these

4. For the system $AX = B$, where A has $m \times n$ matrix and $n < m$

a) No solution

b) Exactly one solution

c) Infinitely many solution

d) None of these

5. For the system $AX = B$, where $|A| \neq 0$ has

b) No solution

b) Exactly one solution

c) Infinitely many solution

d) None of these

8. The following homogenous system has

$x + y + z = 0$

$2x + 3y + 2z = 0$

$2x + 2y + 2z = 0$

a) No solution

b) Exactly one solution

c) Infinitely many solution

d) None of these

9. A system of m equations with n unknowns ($m < n$) has

a) No solution

b) Exactly one solution

c) Infinitely many solution

d) None of these

10. A system of linear equations $AX = B$ has solution if

a) $\text{Rank } A = \text{Rank } B$

b) $\text{Rank } [A; B] = \text{Rank } A$

c) $\text{Rank } [A; B] = \text{Rank } B$

d) None of these

11. The following homogenous system has
\[2x_1 - 4x_2 + 2x_3 + 2x_4 = 0 \]
\[2x_1 + 2x_2 - 2x_3 + 2x_4 = 0 \]
\[2x_1 + 14x_2 - 10x_3 - 2x_4 = 0 \]

a) No solution
b) Exactly one solution
c) Infinitely many solutions
c) None of these

12. For the system \(AX = B \), where \(|A|=0\) has \[\text{[]} \]
a) No solution
b) Exactly one solution
c) Infinitely many solutions
d) None of these

13. A set \(S \) is linearly independent if \[\text{[]} \]
a) It contains zero vector
b) In \(S \) one vector is scalar multiple of other
c) Super set of \(S \) is dependent
d) None of these

14. If \(S = \{ \vec{u}_1, \vec{u}_2, \vec{u}_3 \} \), where \(\vec{u}_1 = (-\frac{1}{2}, -\frac{1}{2}, \lambda), \vec{u}_2 = (\lambda, -\frac{1}{2}, -\frac{1}{2}) \), \(\vec{u}_3 = (-\frac{1}{2}, \lambda, -\frac{1}{2}) \) then \(S \) is linearly dependent for \(\lambda \) is equal to \[\text{[]} \]
a) 1
b) 2
c) 0
d) \frac{1}{2}

15. Let \(\text{dim } V = n \) and \(S \) is any subset of \(V \) which always dependent set if \(S \) contains \[\text{[]} \]
a) \(n \) vectors
b) less than \(n \) vectors
c) more than \(n \) vectors
d) none of these

16. Which of the following is not linear combination of \(A = \begin{bmatrix} -1 & 1 \\ 0 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 \\ -2 & 4 \end{bmatrix}, C = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \) \[\text{[]} \]
17. If \(V = M_{m \times n}(\mathbb{R}) \) then \(\text{dim} \, V \) is

a) \(m \)
 b) \(n \)
 c) \(mn \)
 d) \(m + n \)

18. If \(P_\text{n} \) is the set of polynomials of degree \(\leq n \) is vector space, then \(\text{dim} \, P_\text{n} \) is

a) \(n \)
 b) less than \(n \)
 c) greater than \(n \)
 d) \(n + 1 \)

19. Which of the following sets of vectors is basis for \(\mathbb{R}^2 \)

a) \(\{(2, 4), (0, 0)\} \)
 b) \(\{(2, 4), (4, 4)\} \)
 c) \(\{(2, 2), (2, 0)\} \)
 d) \(\{(2, 4), (4, 2), (2, 2)\} \)

20. If \(W = \{(x, y, z) / 2x + 2y + 2z = 0\} \) is subspace of \(\mathbb{R}^3 \), then \(\text{dim} \, W \) is

a) \(0 \)
 b) \(1 \)
 c) \(2 \)
 d) \(3 \)

21. Null space of \(A \) is equal to solution space of

a) \(AX = B \)
 b) \(A^T X = 0 \)
 c) \(AX = 0 \)
 d) none of these

22. If \(A \) is \(m \times n \) matrix then rank \(A + \text{nullity} \, A \) is equal to

a) \(m \)
 b) \(n \)
 c) \(m + n \)
 d) \(mn \)

23. If \(A = \begin{bmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{bmatrix} \), then rank of \(A \) is equal to

a) \(0 \)
 b) \(1 \)
 c) \(2 \)
 d) \(3 \)

24. If \(A = \begin{bmatrix} 2 & -1 & -3 \\ -1 & 2 & -3 \\ 1 & 1 & 4 \end{bmatrix} \), then nullity of \(A \) is equal to

a) \(0 \)
 b) \(1 \)
 c) \(2 \)
 d) \(3 \)
25. Column vector B is in the column space of A if
 a) $\text{rank } [A : B] = \text{rank } A$
 b) $\text{rank } [A : B] = \text{rank } B$
 c) $\text{rank } A = \text{rank } B$
 d) none of these

Part-B (True or False)

1. Gauss Elimination and Gauss Jordan Elimination methods are same. []
2. If a set contains the zero vectors, then it is linearly independent. []
3. Any two basis of vector space have the same number of vectors. []
4. Determinant of any matrix always exists. []
5. Row rank = column rank, for any matrix A, always satisfied. []
6. Null space of A and solution space of $AX=0$ are different. []
7. Row space of A is equal to column space of A^t. []
8. Rank of $A +$ nullity of A is equal to number of columns of A. []
9. A homogenous system of equations $AX=0$ is consistent. []
10. Any system of m equations with n variables is inconsistent. []
11. Trivial solution exist for the system $AX=B$. []
12. For the system $AX=0$ and $|A|=0$ has non-trivial solution. []
13. For the system $AX=B$ and $|A| \neq 0$ has unique solution. []
14. Superset of dependent set is always dependent. []
15. $\dim V = n$ and if S is dependent set with n elements then S is basis for V []
Part-C (Tricky Questions)

1. For which value(s) of \(a \) does the following system have zero, one infinitely many solutions?

\[
x_1 + x_2 + x_3 = 4
\]

\[
x_3 = 2
\]

\[(a^2 - 4)x_3 = a - 2\]

2. For which value(s) of \(\lambda \) does the following system of equations have nontrivial solutions?

\[
(\lambda - 3)x + y = 0
\]

\[
x + (\lambda - 3)y = 0
\]

3. Find the basis for column space of

\[
A = \begin{bmatrix}
1 & 0 & 1 & 1 \\
3 & 2 & 5 & 1 \\
0 & 4 & 4 & -4
\end{bmatrix}
\]

4. Find the volume of the sphere \(x^2 + y^2 + z^2 = a^2 \).

5. Show that the system

\[
x_1 - 2x_2 + x_3 + 2x_4 = 1
\]

\[
x_1 + x_2 - x_3 + x_4 = 2
\]

\[
x_1 + 7x_2 - 5x_3 - x_4 = 3
\]

has no solution.

6. Let \(A = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \), for which triples \((y_1, y_2, y_3) \) does the system \(AX = Y \) have solution.
7. Give an example of a system of two linear equations in two unknowns, this has no solution.

8. Consider the system of equations

\[
\begin{align*}
 x_1 - x_2 + 2x_3 &= 1 \\
 2x_1 + 2x_3 &= 1 \\
 x_1 - 3x_2 + 4x_3 &= 2
\end{align*}
\]

Does the system have a solution?

9. Find the co-ordinate vector of \(\overrightarrow{u} \) relative to the basis \(S = \{ \overrightarrow{u}_1, \overrightarrow{u}_2 \} \) for \(\mathbb{R}^2 \)

where \(\overrightarrow{u}_1 = (0, 2) \), \(\overrightarrow{u}_2 = (1, 1) \) and \(\overrightarrow{u} = (a, b) \).

10. Determine whether \(B = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} \) is in column space of \(A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix} \).
APPENDIX-3

List of the students

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Name</th>
<th>Male/Female</th>
<th>Name of the College</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Baste kasturi Sanjay</td>
<td>Female</td>
<td>K. T. H. M. College, Nashik</td>
</tr>
<tr>
<td>2</td>
<td>Baviskar Yogesh Sunil</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bhandare Akanksha Ramnath</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Davare Sumant Kisan</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gadekar Suraj Balasaheb</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gaikwad Swati Sainath</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Gangode Savita Pandharinath</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Gangurde Sneha Subhash</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Gavit Nikita Arjun</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Gosavi Shubham Vijay</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ingale Neha Shrikant</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Khanchane Komal Ashok</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Mahajan Diksha Atmaram</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Muthekar Vishal Ramesh</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nagare Narayan Kashinath</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Nikam Sagar Appasaheb</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Patil Ashwini Chandrabhan</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Patil Karishma Ravindra</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Pawar Nagesh Dattatray</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Pawar Neha Vilas</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Pingale Yogesh Rajendra</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Sonawane Surekha Anandrao</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Ugale Kaveri Bhaskar</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Waje Kaveri Vitthal</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Athare Prerama Sudam</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Borade Madhuri Bhausaheb</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Gadkari Dipali Deoram</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Gender</td>
<td>College</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>28</td>
<td>Gaikwad Devidas Pandurang</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Gite Nilima Sanjay</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Gupta Pooja Omprakash</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Jadhav Harshada Bhaskar</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Jadhav Radhika Mahendra</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Jadhav Vaishali Ashok</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Kalamkar Prajakta Kamlakar</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Katkade Sumita Punja</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Kedare Amrapali Daga</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Khule Vishal Arun</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Nikam Pushparaj Prashant</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Patil Rahul Raju</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Patil Ujwala Jijabrao</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Pawar Pravin Laxman</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Pawar Raju Dnyaneshwar</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Pote Rajashree Eknath</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Shardul Rupesh Anand</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Shinde Rashmi Vasant</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Shirsath Pratiksha Pramod</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Thakare Nitin Raghunath</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Varkhede Avinash Arvind</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Page Vitthal Pandharinath</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Ashtekar Arun Dattu</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Barbade Avinash Balu</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Bare Ambadas Balasaheb</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Aher Krushna Shashikant</td>
<td>Male</td>
<td>Arts, Science and Commerce College Ozar</td>
</tr>
<tr>
<td>53</td>
<td>Aher Prema Rajendra</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Bhandare Rutuja Sunil</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Dhikale Rahul Shivaji</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Gotare Surekha Suresh</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Hakim Sumaiya Fattu</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Jadhav Pavan Sharad</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Kadam Chaitali Rajendra</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Kadam Kiran Dnyaneshwar</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Kale Rroshani Rajendra</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Karpe Ankita Chandrashekhari</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Khairnar Shweta Bapu</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Khandave Priyanka Pandit</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Kumar Neeraj Ishwar Singh</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Kumar Vipin Rajendra</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Mahale Pradnya Hiraman</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Maheshwari Vilas Matsagar</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Manisha Rajendra Jadhav</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Mogal Sonal Sampat</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Nutan Rattan Bhandare</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Pansare Supriya Ashok</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Patil Pooja Madhukar</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Pund Priyanka Madhukar</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Samir Kumar Joshi</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Shinde Anand Jagannath</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Tejashree Valmik Jaitmal</td>
<td>Male</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Waghmare Hemlata Balu</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Patil Komal Ramkrishna</td>
<td>Female</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Patil Roshan Shivaji</td>
<td>Male</td>
<td></td>
</tr>
</tbody>
</table>