TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>I</td>
</tr>
<tr>
<td>Certificate</td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>III</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>V</td>
</tr>
<tr>
<td>Abstract</td>
<td>VI</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>XI</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XV</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XVIII</td>
</tr>
</tbody>
</table>

CHAPTER ONE INTRODUCTION

1.1 Prelude
1.2 Aggregates
1.3 Recycled Aggregates
1.4 Sustainability in the Concrete Industry
1.4.1 Advantages of Recycling C&DW
1.4.2 Current Knowledge base on the use of Recycled Aggregates in Concrete
1.4.3 Economics and Best Practicable Options for Recycled Coarse Aggregates
1.4.4 Utilization of Recycled Coarse Aggregate in concrete
1.5 Research Outline

CHAPTER TWO REVIEW OF LITERATURE

2.1 Review of Literature
2.2 Major finding from Literature Review

CHAPTER THREE OBJECTIVES OF PRESENT WORK

3.1 Aim
3.2 Objectives
3.3 Scope of the work
3.4 Research Plan
3.4.1 Materials
3.4.2 Experimental Investigation
5.2.9 Water Absorption for Different Types of Concretes
5.2.10 Durability Test (NaOH Alkali Attack Test) for Different Grades of Concrete
5.2.11 Durability Test (MgSO₄ & Na₂SO₄ Sulphate Attack Test) for Different Grades of Concrete
5.2.12 Durability Test (NaCl Solution Chloride Resistance Test) for Different Grades of Concrete
5.2.13 Durability Test (Sea Water Solution) for Different Grades of Concrete
5.3 Cost of Concrete OR Economic Feasibility

CHAPTER SIX DEVELOPMENT OF MATHEMATICAL MODEL
6.1 Mathematical Modeling for Compressive Strength.
6.1.1 Mathematical Modeling for Compressive Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 0% replacement of NCA by RCA Combination.
6.1.2 Mathematical Modeling for Compressive Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 40% replacement of NCA by RCA Combination.
6.2 Mathematical Modeling for Split Tensile Strength.
6.2.1 Mathematical Modeling for Split Tensile Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 0% replacement of NCA by RCA Combination.
6.2.2 Mathematical Modeling for Split Tensile Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 40% replacement of NCA by RCA Combination.
6.3 Mathematical Modeling for Flexural Strength.
6.3.1 Mathematical Modeling for Flexural Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 0% replacement of NCA by RCA Combination.
6.3.2 Mathematical Modeling for Flexural Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 40% replacement of NCA by RCA Combination.
6.4 Mathematical Modeling for Pullout Strength.
6.4.1 Mathematical Modeling for Pullout Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 0% replacement of NCA by RCA Combination.

6.4.2 Mathematical Modeling for Pullout Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 40% replacement of NCA by RCA Combination.

6.5 Mathematical Modeling for MOE Strength.

6.5.1 Mathematical Modeling for MOE Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 0% replacement of NCA by RCA Combination.

6.5.2 Mathematical Modeling for MOE Strength of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 40% replacement of NCA by RCA Combination.

6.6 Mathematical Modeling for Cost of Concrete.

6.6.1 Mathematical Modeling for Cost of Concrete for M20, M25, M30, M40, M45, M50, M55, M60 with 0% to 40% replacement of NCA by RCA Combination.

CHAPTER SEVEN CONCLUSIONS, RESEARCH OUTCOME AND FUTURE SCOPE

REFERENCES

APPENDIX-A CONCRETE MIX DESIGN

APPENDIX-B LIST OF ARTICLES AND PAPERS PUBLISHED AND PRESENTED BY THE AUTHOR