CHAPTER 1

INTRODUCTION
CHAPTER - I
INTRODUCTION

Human resource had been an important factor of production. It is the only active factor of production that can employ other factors in the best possible manner. Every organisation operates by combining resources both material and non-material. While the plant, equipment, financial assets (generally described as material resources), are considered as vital, the one that is most important is the non-material resource, namely the "human resource" or the employee resources. Human resource management is concerned with the people's dimension in management. Every organization is made up of people. Acquiring their services, developing their skills, motivating them to high levels of performance and ensuring that they continue to maintain their commitment to the organisation, referred to as Human Resource Management.

Recently a number of developments have combined to make the effective management of human resource even more important. These developments include the drastic changes occurring in the nature of work performed, change in the attitudes of workers and workers' expectations. Today, workers have higher expectations including a desire for share in the financial gains achieved by the organisation. The assessment of human resource conditions involves external conditions, organizational conditions and employee conditions. External conditions include: the societal, cultural, political and economic factors relevant to organisation and its employees. In more specific terms, these include economic conditions, government regulations (referred to as human resource laws) of central, state and local governments, including the court interpretations and directions regarding these laws and finally the trade union expectations. At the principle level, the objective of each human resource function is same across the organisation. However, the practices and approaches follow by the organizations may differ.

Organizational conditions include the nature of the organisation and the nature of work performed. Nature of organization includes strategies, objectives, financial situation, technology and work culture. The nature of work includes skills required, training, availability of compensation and reward
systems and the manner in which the jobs are designed, employee conditions that refer to abilities, motives and attitudes of the workers. The setting up of human resource objectives requires the consideration of efficiency and equity—both of the organisation and its employees. Efficiency refers to the comparison between inputs and outputs, equity refers to the perceived fairness of both the procedures used to make human resource decisions—the rules and procedures used to decide pay increase, hiring, lay off or promotions. Policies are interrelated because fair and equitable employment policies increase employee’s willingness to put in more efforts for increasing the productivity.

THE CONCEPT OF HUMAN RESOURCES MANAGEMENT

Milkovich, George.T and Boundreau John W. (1990) have defined “Human Resource Management as a series of decisions that affect the relationship between employees and employers; it affects many constituencies and is intended to influence the effectiveness of employees and employers”. The concept of Human Resource Management (HRM) is comparatively of recent origin. HRM is a process, which consists of a series of activities conducted to design behavioral changes in a specified period. Lippilt (1978) points out HRM as a system that depends on:

A. Work itself which generates a higher degree of responsibility for the employees;
B. The individual’s personal and professional growth;
C. The improved quality output as a result of increased responsibility;
D. Organization as an open system.

Focus on all aspects is what HRM is all about. Rao (1985) defines HRM as “a process in which the employees of an organisation are continuously helped in a planned way to (a) acquire or sharpen capabilities required to perform the present and future expected roles; (b) develop their general enabling capabilities as individuals so that they are able to discover and exploit their own inner potential for their own and/or organizational development purpose;
and (c) develop an organizational culture where superior-subordinate relationships, team work, and collaboration among different sub-units are strong and contribute to the organizational health, dynamism and pride of employees”.

HRM as a function consists of various activities related to training and development and performance appraisal. In fact, appraisal helps in identifying potential through appraisal feedback. Training, therefore, play a significant role in achieving individuals' growth and development. In this respect, HRM is more a proactive and supportive function because the organisation has to take a lead in helping the people to grow and realize their potential.

HUMAN RESOURCE MANAGEMENT IN INDIA:

Human resource management as a distinct and important function in industrial/business organizations is a latest development on the Indian scene, and still has a comparatively low profile. It can be argued that even in industrially advanced countries, the importance of human resource management was not appreciated at the earlier stages. It was only after the formation of strong trade unions, the growth of collective bargaining, a wider social consciousness about labour welfare and protective labour legislation, a climate was created for the growth of the concept of Human Resource Management. Speaking in a wider context, the two important developments that have contributed enormously to the growth of human resource management concept and practice are (i) the enormous growth of social sciences and availability of research based data on the motivation and behaviour of men at work in the industrial setting and realization that all the resources used in industry the most important is the human factor: and (ii) conflict with organized labour, so endemic in the Indian situation, compelled captains of Indian industry to realize that the human factor (the most appreciating asset) could depreciate even faster than money, material and machinery, if not properly handled. The beginning of this compelling realization could be seen in the emergence of personnel management and the increasing importance being attached to the role of the personnel manager.
Currently, the idea that has captured the mind of Indian industrialists is the need of a change agent in organizational development. In India, it was only in the thirties certain employers felt the need for appointing Labour Welfare Officers to look after labour matters. The Royal Commission on labour (1931) recommended the employment of Labour Welfare Officers in the factories.

The Factories Act and the Mines Act were amended in the light of recommendations made by Royal Commission to provide for the appointment of labour welfare officers. Next came the stage of appointing 'Personnel Managers' with wider functions and duties, such as recruitment, selection, promotion, wage and salary administration, industrial relations, welfare, social security safety programmes, training and education, including management development and career planning, communication, performance appraisal, public relations, personnel research, and organizational development. Human Resource Management has thus emerged as a specialized function.

With the increasing trend of appointment of personnel officers in the Indian industry, the era of the importance of human relations in industry started in India. While there are formidable difficulties in applying the human relations philosophy in the Indian industrial situation, there are however, some very promising developments ie. Social and economic changes underscoring the growth of democratic ethos in Indian industry. The unionized industrial culture with the new worker gradually making himself felt and the professional manager becoming more effective, the family concerns gradually undergoing re-orientation and most important of all, the enterprises willing to experiment with new value system, human relations has emerged as the most important field in the area of Human Resource Management. Modern management in India has become increasingly concerned with the understanding and management of the most important of all factors of production i.e., the human factor. As Douglas Mc Gregory puts it, “the effectiveness of organizations could be increased a great deal if they could, somehow, know the art of tapping the unrealized potential present in their human resources” In recent times the most talked about approach in man management in India has been
the human resource management approach. Like elsewhere, human relations in India's management scenario mean a body of systematic knowledge devoted to explaining the behaviour of individuals in the working organisation. The core of human relation philosophy is the workers' response to the clearly demonstrated interest by management and of organizations that emphasize the individual worker's need for satisfactory relationship with other members of his work group and his work. Human resource management is not a one-man responsibility nor can an individual alone even achieve it. It is a corporate and co-operative integrated endeavour that should stem from a common felling and concept and should progress in a unified and coordinated manner.

HUMAN RESOURCE MANAGEMENT – AN OBJECTIVE FOCUS:

The primary objective of human resource management is to contribute to the profitability and survival of an organization by effective management of its total human resources. The subsequent objectives of human resource management can broadly be divided into social, organizational, functional and personnel objectives. The social objective of human resource management is that it recognizes the changes in the nature of employment contract, the ideals enshrined in the Constitution, objectives established in National Economic Plans, and legislation limiting the employee's prerogatives in personnel policies and decisions. The organizational objective of human resource management includes building up of employee motivation, commitment, role effectiveness emphasizing the philosophy underlying human resource management policies and practices. The functional objective aims at the formulation of human resource management policies, provision for providing support services such as recruitment, selection, training, and development and incentive systems. It also aims at developing collaborative and problem solving approaches in union-management relations. The prime objective of human resource management is to assist employees in developing congruence between individual goal and organizational objectives while striving for realizing higher standards of performance, satisfaction and quality working life. Broadly speaking, for the purpose of the study, the
functions of Human Resource Management may be categorized into: (a) Recruitment and selection (b) Training and development (c) Wage/salary, incentive scheme, Motivation, communication channels, Industrial Relations, Welfare facilities and social security schemes. Acquisition of human resource is one of the most crucial functions of management. The greatest merit of an organization lies in the quality of its human resources and the effectiveness with which they are utilized. The quality of human resource in an organization significantly depends upon its recruitment policies and selection procedures. This function is assuming greater significance in the Indian context as the business enterprises are growing in size and becoming technologically more sophisticated. In fact, acquisition consists of recruitment, selection, induction and promotion. Training and development function that aims at enhancing skills and abilities of the human resource is assuming significance in the context of rapid socio-economic development and technology oriented industrialization in India. Besides, enterprises are dependent on the regular supply of updated human talent. This can be achieved through the process of training and development policies. Motivation of employees helps to secure their integration with the organization and attain optimum level of efficiency and in achieving organizational goals. This can be achieved through a rational wage policy, incentive schemes and welfare facilities. Therefore, human resource management aims at the development of sound wage policy for stimulating the performance and welfare policies to provide for the positive working conditions. Hence, a number of welfare measures have been attempted by the industrial enterprises as per the policy guidelines formulated by the Government of India since 1947.

Coal mining

The technical and mechanical activities involved in removing coal from the earth and preparing it for market. Coal mining in the industrialized countries is characterized by the integration of a number of complex systems into a production methodology that varies for surface versus underground mining. Coal was the basic energy source that fueled the Industrial Revolution; the resulting industrial growth supported the large-scale exploitation of coal deposits. In the late 20th century, open pit mines replaced underground mines
as the principal source of coal in the industrial nations. The mining of coal from surface and underground deposits today is a highly productive, mechanized operation.

Coal mining is the extraction or removing of coal from the earth for use as fuel. A coal mine and its accompanying structures are collectively known as a colliery.

The basic systems of the production methodology are the following. (1) Extraction systems: the methods and techniques used to break out or "win" the coal. (2) Materials-handling systems: the transport of coal and waste products away from the active production area, and the transport of the necessary materials, equipment, supplies, and workers to service the extraction system. (3) Ventilation: the development and operation of an air distribution system to provide the quantity, quality, and velocity of air where and when needed, to meet health and safety requirements. (4) Ground control: the control of the behavior of underground and surface openings developed by the extraction of coal. (5) Reclamation: the restoration of the mined area to its approximate original state or to an approved state.

To properly plan, design, and engineer a production system, knowledge of the geology of the deposit and the chemical and physical properties of the coal must be assembled and assessed. Basic information on the geology of the deposit is obtained from surface prospecting and mapping, and borehole drilling. This information is used to determine the size and shape of the coal area, the geologic column above and below all minable seams, the continuity and persistence of geologic features throughout the deposit, the presence of water or methane gas, and other special conditions. Proximate chemical analyses are made to determine coal characteristics, which affect its utilization. Tests are made to determine the cleaning, grinding, and handling properties of the coal. Ultimate chemical analyses are made to determine the fundamental chemical constituents of the coal. Maps are drawn to summarize this information, and are used for scheduling and sequencing production. See
When a coal seam lies close to the ground surface, a surface mining method is employed. Surface coal mines involve area mining or modified open pit mining, contour mining and mountaintop removal, and auger mining. Removal of overburden is called stripping, and hence the term “strip mining” is often applied to surface coal operations. Area mining is applicable in relatively flat to gently undulating terrain where coal seams are of considerable area and may be at various dips. Contour mining and mountaintop removal are used in hilly and mountainous country and can be modified to handle coal seams at any dip. Auger mining follows the other surface methods when overburden removal becomes uneconomic, and is generally limited to more or less horizontal coal seams. Een a coal seam does not lie close to the surface; it must be extracted by underground methods. The methods may be classified as room-and-pillar, longwall, and others. In each method, modifications to the basic techniques are needed to cope with varying geologic conditions and seam factors. Irregular seam thickness, steep dips, changing rock quality, seam partings, and other factors have a marked influence on the mine geometry and equipment specifications. In developing a particular extraction system, development openings and production openings must be driven. Development openings provide the primary access to various parts of the coal deposit and are called mains. In room-and-pillar mining, the production openings are the rooms driven in the panel and the extraction cuts made during pillar retrieval. In longwall mining, the production openings are the longwall faces. In general, the term “development” includes all openings and other work, which precedes production.

Methods of extraction

The most economical method of coal extraction from coal seams depends on the depth and quality of the seams, and also the geology and environmental factors of the area being mined. Coal mining processes are generally differentiated by whether they operate on the surface or underground. Many
coals extracted from both surface and underground mines require washing in a coal preparation plant.

Surface and mountaintop mining

If the coal seams are near the surface, the coal is extracted by strip mining. Strip mining exposes the coal by the advancement of an open pit or strip. As the coal is exposed and extracted, the overburden from the still covered coal fills the former pit, and the strip progresses. Most open cast mines in the United States extract bituminous coal. In South Wales open casting for steam coal and anthracite is practiced.

Mountaintop removal is a form of surface mining that takes place at the topmost portion of a mountain, and is a technique that is commonly applied in Appalachia. Utilized for the past 30 years, mountaintop mining involves removing the highest part of the mountain for the maximum recovery of coal. The process is notorious for destruction of entire ranges. So is the practice of *hollow fills*, or filling in valleys with mining debris, covering streams and disrupting ecosystems.

Underground mining

Most coal seams are too deep underground for open cast mining and thus this type of mining is called underground mining. In deep mining, the room and pillar or bord and pillar method progresses along the *Mammoth coal vein* seam, while pillars and timber are left standing to support the coal mine roof. A most dangerous method of operation in deep mining and is known as *robbing the pillars*. This is where miners attempt to remove and/or retreat between the timbers in order to get coal out of the main coal seam, allowing the roof to cave in. This method of mining is used principally in the United States and has contributed to many fatalities in the industry.

There are four major underground mining methods:

- **Longwall mining** — accounts for about 50% of underground production. The longwall shearer has a face of 1000 feet or more. It is a sophisticated machine with a rotating drum that moves mechanically
back-and-forth across a wide coal seam. The loosened coal falls onto a pan line that takes the coal to the conveyor belt for removal from the work area. Longwall systems have their own hydraulic roof supports for overlying rock that advance with the machine as mining progresses. As the longwall mining equipment moves forward, overlying rock that is no longer supported by the coal that has been removed is allowed to fall behind the operation in a controlled manner. The supports make possible high levels of production and safety. Sensors detect how much coal remains in the seam while robotic controls enhance efficiency. Longwall systems allow a 60-to-80% coal recovery rate where the surrounding geology allows their use.

- **Continuous mining** – Utilize a machine with a large rotating steel drum equipped with tungsten carbide teeth that scrape coal from the seam. Operating in a “room and pillar” system – where the mine is divided into a series of 20-to-30 foot “rooms” or work areas cut into the coal bed – it can mine as much as five tons of coal a minute – more than a miner of the 1920s would produce in an entire day. Continuous miners account for about 45% of underground coal production, and also utilize conveyors to transport the removed coal from the seam. Remote controlled continuous miners are used to work in a variety of difficult seams and conditions and robotic versions controlled by computers are becoming increasingly common.

- **Conventional mining** – An older practice that uses explosives to break up the coal seam, after which the coal is gathered and loaded onto shuttle cars or conveyors for removal to a central loading area. This process consists of a series of operations that begins with “cutting” the coalbed so it will break easily when blasted with explosives. This type of mining accounts for less than 5% of total underground production in the U.S. today.

- **Shortwall mining** – A method that accounts for less than 1% of deep coal production, shortwall involves the use of a continuous mining machine with moveable roof supports, similar to longwall. The
continuous miner shears coal panels 150-200 feet wide and more than a half-mile long, depending on other things like the strata of the Earth and the transverse waves.

History

The first commercial coal mines in the United States were started in 1748 in Midlothian, Virginia, near Richmond, Virginia. In the 1880s, Coal-cutting machines became available (prior to that, coal was mined underground by hand.). By 1912, surface mining was underway with steam shovels specifically designed for coal mining.

Modern Mining in America

Technological advancements have made coal mining today more productive than it has ever been. To keep up with technology and to extract coal as efficiently as possible modern mining personnel must be highly skilled and well trained in the use of complex, state-of-the-art instruments and equipment. Future coal miners have to be highly educated and many jobs require four-year college degrees. Computer knowledge has also become greatly valued within the industry as most of the machines and safety monitors are computerized.

The increase in technology has significantly decreased the mining workforce from 335,000 coal miners working at 7,200 mines fifty years ago to 104,824 miners working in fewer than 2,000 mines today. As some might see this as a sign that coal is a declining industry its advances has reported an 83% increase of production from 1970 to 2004. The National Mining Association provides these statistics.

Dangers to miners

Historically, coal mining has been a very dangerous activity. Open cut hazards are principally slope failure, underground mining roof collapse and gas explosions. Most of these risks can be greatly reduced in modern mines, and multiple fatality incidents are now rare in the developed world.

However, in lesser-developed countries, thousands continue to die annually in coal mines. China, in particular, has the highest number of coal mining related
deaths in the world, with official statistic 6,027 deaths in 2004. To compare, the USA reported 28 deaths in the same year. Coal production in China (highest in the world) is only double compared with USA.

Chronic lung diseases, such as pneumoconiosis (black lung) were once common in miners, leading to reduced life expectancy.

Build-ups of a hazardous gas are known as damps,

- Black damp: a mixture of carbon dioxide and nitrogen in a mine can cause suffocation
- After damp: similar to black damp, an after damp consists of carbon dioxide and nitrogen and forms after a mine explosion
- Fire damp: consists of mostly methane, a flammable gas
- Stink damp: so named for the rotten egg smell of the sulfur, a stink dam can explode
- White damp: mainly carbon monoxide, suffocates like black damp
 [also, Carbon monoxide is very toxic, even in concentrations as low as 5 ppm]

There have been many deaths related to the safety conditions that exist in coal mines around the world.

Safer times in modern mining

Improvements in mining methods (e.g. longwall mining), hazardous gas monitoring (such as safety-lamps or more modern electronic gas monitors), gas drainage, and ventilation have reduced many of the risks of rock falls, explosions, and unhealthy air quality. Statistical analyses performed by the U.S. Department of Labor's Mine Safety and Health Administration (MSHA) show that between 1990 and 2004, the industry cut the rate of injuries (a measure comparing the rate of incidents to overall number of employees or hours worked) by more than half and fatalities by two-thirds following three prior decades of steady improvement.
According to the Bureau of Labor Statistics, coal mining is not even among the top 10 most dangerous occupations in America per capita. Pilots, truck and taxi drivers, loggers, fishermen, roofers and other occupations face greater on the job risks than coal miners.

Environmental impacts and mitigation

Coal mining causes adverse environmental impacts. These include:

1. Release of methane, a dangerous greenhouse gas
2. Interference with groundwater and water table levels
3. Impact of water use on flows of rivers and consequential impact on other land-uses
4. Dust
5. Subsidence above tunnels, sometimes damaging infrastructure (e.g., roads in the Lake Macquarie area in NSW, Australia).
6. Rendering land unfit for the common usage of the area.

In addition, burning of coal, mainly for power generation, is a leading contributor to greenhouse gas emissions, climate change and global warming.

Strip mining severely alters the landscape, which damages environmental value in the surrounding land. Mountaintop removal to remove coal is a large negative change to the environment. While there are sometimes requirements for remediation of the strip mined area, the remediation is often delayed for decades. One of the legacies of coal mining is the low coal content waste forming boney piles.

In response to negative land effects of coal mining and the abundance of abandoned mines in the USA, the federal government enacted the Surface Mining Control and Reclamation Act of 1977 (SMCRA), which requires reclamation plans for future coal mining sites. Reclamation plans must be approved and permitted by federal or state authorities before mining begins. As of 2003, over 2 million acres (8000 km²) of previously mined lands have been reclaimed in the United States.
All forms of mining are likely to generate areas where coal is stacked and where the coal has significant sulphur content, such coal heaps generate highly acidic, metal-laden drainage when exposed to rainfall. These liquors can cause severe environmental damage to receiving water-courses. Coal mining releases approximately twenty toxic release chemicals, of which 85% is said to be managed on site. In modern mining, operations must, under federal and state law, meet standards for protecting surface and ground waters from contamination, including acid mine drainage (AMD). To mitigate these problems, water is continuously monitored at coal mines. The five principal technologies used to control water flow at mine sites are: diversion systems, containment ponds, groundwater pumping systems, subsurface drainage systems, and subsurface barriers. In the case of AMD, contaminated water is generally pumped to a treatment facility that neutralizes the contaminants. Still, AMD remains a large problem, emanating from coal mines abandoned in the United States prior to SMCRA.

It is also thought that coal mining is harmful to the quality of air in the surrounding regions. While burning of coal in power plants is most harmful to air quality, the process of mining can release pockets of hazardous gases. These gases may pose a threat to coal miners as well as a minor source of air pollution.

In recent years, there has also been concern for the safety of miners who work in subsurface coal mines.

Coal Industry in India – A Glance:

Coal and oil are the two primary fuel resources. Coal constitutes nearly 85% of the total fossil fuel reserves in the world. In India the main workable deposits of coal are found in the Permian series, known as Gondwana. Coal is broadly classified into coking and non-coking. Archeological evidence indicates that coal was being used in our country even during the remote periods of history. The first published reference to the mining of coal in India, however, dates back to the year 1774 when shallow mines were reported to
have been developed in the Raniganji field. In the face of many vicissitudes, the venture ended in failure.

Forty years later, the next attempt of coal mining was recorded during the second quarter of the nineteenth century when a number of seams were opened in the Raniganj field, either as quarry workings or as shallow pits. This advance was facilitated in part at least, by the systematic geological survey of the field that was undertaken during 1845-46 and again in 1858 - 60. By 1860 nearly 50 collieries in the Raniganj area were producing about 2,82,000 tones of coal per annum. Elsewhere in the country, progress had been continuous during the second half of the 19th century. The beginning of coal mining in Central Provinces dates from the year 1862 and in the Rewa state from 1884. The Singareni field in the Hyderabad state was discovered in 1872 and went into production some fifteen years later. Appreciable developments took place in upper Assam coalfields from 1881, and in Baluchistan and Punjab during the last decade of the 19th century. At the turn of the 20th century coal production in India reached a total of about 6 million tones of which nearly 5 million tones were raised in the Raniganj, Jharia and Giridhi fields. Further progress was made during the years preceding the First World War and a number of new fields such as Bokaro, Perch valley and Chandra were opened up. This resulted in bringing up the total output to nearly 16.5 million tones per annum.

Increased demand for coal during the First World War (1914-18) gave further impetus to the coal industry. There was considerable increase in industrial activity throughout the country. By the end of the First World War the output rose to nearly 21 million tones per annum, of which the share of the Jharia and Raniganj fields was about 11 million tones and 6.5 million tones respectively.

The great economic depression of 1930 and after subsequent years exposed the industry to the most serious economic blizzard in its history. During 1931 there was a sudden decline in production by nearly 2 million tones. In 1933 the output fell below the 1918 figure. Many collieries closed down but others
are in the struggle for survival tried to cope with the steadily falling prices by resorting to intensifying production through 'slaughter' exploitation. Even then production in this period was not equating with the demand. The special rebate given in rail freight and port terminal charges helped in increasing the output. During the first three years of war there was considerable increase in industrial activity, there was also some increase in coal production, but there was not enough coal to meet all needs. Positive steps were taken by the middle of 1944 and a strict control over prices was imposed. Special arrangements to recruit labour for the coal fields, to import machinery through government channels and offer substantial financial incentives to collieries in the form of Production Bonus and concessions in regard to excess profits tax were some of the important steps taken to boost the production.

The end of the First Five Year Plan envisaged a production of 39 million tones. Coal production reached 38.4 million tones by the end of 1955-56. The Second Five Year Plan put forward a more ambitious target for coal production. From 38.4 million tones at the end of First Five Year Plan; production was to be stepped up to 60 million tones by the end of Second Five Year Plan,

In the Third Five Year Plan a production target of 98.5 million tones was envisaged for the year 1965-66. Due to transport constraints, the resulted production by the year 1965-66 reached the level of only 67.7 million tones and was inadequate to meet the growing demand of coal for generation of power and for other industrial and metallurgical purposes. The oil crisis of early seventies spurred the government into taking a hard look at the coal sector. Moreover the conditions of manpower regarding the working environment and wage payment deteriorated. Manpower was exploited by unreasonable payments.

On the basis of the recommendations of the various committees constituted by Govt. of India and also by recognizing the importance of coal as a primary source of energy in the national economy, it was felt that massive investment needed to meet the huge demand. Coal Industry in India was nationalized in phases during 1972 and 1973. The primary goal for nationalized Coal industry
was therefore to ensure a scientific exploration and exploitation of coal deposits with due attention to safety, conservation and environmental aspects, to accelerate the development process, through substantial investment in nationalized coal companies.

The Coking Coal Mines Ordinance (Emergency provisions) was promulgated by the Government of India on 16-10-1971 under which except the captive mines of TISCO, the management of all coking coal mines were taken over by the Government. A new company called Bharat Coking Limited was formed as a subsidiary company of Steel Authority of India Limited to manage the taken over mines. The mines were subsequently nationalized with effect from 1-5-1972. Later the managements of 711 Coal mines were also taken over by the Government with effect from 31-1-1971 and a new Government Company namely Coal Mines Authority Limited (CMAL) with head quarters at Calcutta, was set up by the Government in May, 1973, to manage non coking coal mines.

The CMAL was organized as a unitary structure on Divisional pattern with four Divisions, the Central Division, the Eastern Division, the Western Division and the Central Mine Planning and Design Institute Limited (CMPDIL). The mines of erstwhile National Coal Development Company were brought under the central Division of the CMAL. In September 1975 Coal India Limited was formed as a Holding company with 5 coal producing subsidiaries which are as under:

(a) Bharat Cooking Coal Ltd. (BCCL)
(b) Central Coalfields Ltd. (CCL)
(c) Western Coalfields Ltd. (WCL)
(d) Eastern Coalfields Ltd. (ECL)
(e) Central Mine Planning and Design Institute Limited (CMPDIL)

In view of the projected increase in production and investment contemplated for CCL and WCL group of coal mines and in view of their extensive geographical spread resulting in day-to-day administrative, technical and
communication problems etc two more coal companies, namely Northern Coalfields Limited and South Eastern Coalfields Limited were formed with effect from 28-11-1985. Considering the prospects of Orissa Coalfields being the growth centre for the VIII & IX plan periods, a new coal company was formed bifurcating the South Eastern Coalfields Limited. The new company Mahanadi Coalfields Limited, was incorporated on 3.4.1992 with its headquarters at Sambalpur (Orissa) as fully owned subsidiary of Coal India to manage the Talcher and Ib-valley coalfields in Orissa.

Coal India Limited now has eight subsidiaries viz. Bharat Coking Coal Limited, Western Coalfields Limited, Central Coalfields Limited, Eastern Coalfields Limited, Northern Coalfields Limited, South Eastern Coalfields Limited, Mahanadi Coalfields Limited and Central Mine Planning & Design Institute Limited. First seven being production companies and the last one being an engineering design and exploration institute set up for preparing prospective plans, rendering consultancy services and undertaking exploration and drilling work to establish coal reserves in the country and collect detailed data for preparation of projects for actual mining. Coal India Limited and its subsidiaries are incorporated under the companies Act and are wholly owned by the Central Government. The coal mines in Coal India Limited, similarly the low temperature carbonization project at Dankuni and Coal stockyards are also under the direct administrative control of Coal India Limited. There is another coal company in public sector namely Singareni Collieries Company Limited which is a joint venture of Government of Andhra Pradesh and Government of India apart from three captive mines namely Indian iron and steel company, Damodar Valley Corporation and Tata Iron and steel company.

Constraints of Coal Industry:

In India, coal is the most abundant available fossil fuel and provides a substantial part of energy needs. It is used for power generation, to supply energy to industry as well as for domestic needs. India is highly dependent on coal for meeting its commercial energy requirements. Presently about 62% of power generated in the country is from coal fired boilers. About 66% of the coal produced is consumed by Thermal Power Plants. This pattern is likely to
continue. The coal based electricity generation capacity sharply increased from 8000 MW in 1970 to 51000 MW in 1995. This is expected to go up to 140000 MW by 2009-10. However, at present, the country faces an energy shortage of about 15% and peaking shortage of 30%.

Coal Mining in India was started in the year 1774 in the eastern part of the country in the State of West Bengal. At the beginning of this century, the total production of coal was just about 6 million tonnes per year. When India attained its independence in 1947, the coal production was nearly 30 million tonnes per year and the coal mining operation was primarily in the private sector. Till 1971-73 the coal mining operation remained primarily in the private sector and the production had come up to a level of nearly 72 million tonnes per year only. The entire coal industry in India was nationalised during 1972-73 and then on massive investments were made by the Government of India in this basic infrastructure sector. India now ranks as the third largest coal producer of the World next only to China and USA.

Coal Production during the Plan Periods:

The detailed break up of coal production in India in different Plan periods is indicated below:

<table>
<thead>
<tr>
<th>Five Year Plan</th>
<th>Production (Metric Tonnes)</th>
<th>Average Annual Growth (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>38.40</td>
<td>0</td>
</tr>
<tr>
<td>Second</td>
<td>55.66</td>
<td>7.71</td>
</tr>
<tr>
<td>Third</td>
<td>67.73</td>
<td>4.00</td>
</tr>
<tr>
<td>Fourth</td>
<td>72.94</td>
<td>0.93</td>
</tr>
<tr>
<td>Fifth</td>
<td>102.02</td>
<td>6.94</td>
</tr>
<tr>
<td>Sixth</td>
<td>147.42</td>
<td>6.94</td>
</tr>
<tr>
<td>Seventh</td>
<td>200.87</td>
<td>6.38</td>
</tr>
<tr>
<td>Eighth</td>
<td>286.00</td>
<td>5.90</td>
</tr>
<tr>
<td>Ninth</td>
<td>359.60</td>
<td>4.70</td>
</tr>
</tbody>
</table>

Source: www.Calindustry.com
Coal Reserves and their Quality:

The total reserves of coal are estimated at about 201.07 billion tonnes. The coal deposits are confined to the eastern, central and southern parts of the country.

Quantity-wise reserve position is broadly as under:

- Coking coal - 15%
- Non-coking coal - 85%

Table 1.2. Break-up of Indian Coal Reserves according to Grade and Depth as on 1.1.2006 (Billion Tonnes)

<table>
<thead>
<tr>
<th></th>
<th>Grades (Superior)</th>
<th>Grades (Inferior)</th>
<th>Total (Non coking)</th>
<th>Coking</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>47.22</td>
<td>124.04</td>
<td>171.26</td>
<td>29.81</td>
<td>201.07</td>
</tr>
<tr>
<td>Upto 600 m depth</td>
<td>43.35</td>
<td>112.44</td>
<td>155.79</td>
<td>23.85</td>
<td>179.64</td>
</tr>
</tbody>
</table>

Source: www.Ccoalindustry.com
Table 1.3 Details of proved coal reserves in A.P

DISTRICT-WISE, GRADE-WISE AND DEPTH-WISE PROVED GEOLOGICAL RESERVES IN A.P

<table>
<thead>
<tr>
<th>District</th>
<th>Depth (m)</th>
<th>Grade</th>
<th>Total Res. (m.t.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>ADILABAD</td>
<td>0-300</td>
<td>0.00</td>
<td>25.02</td>
</tr>
<tr>
<td></td>
<td>300-600</td>
<td>0.06</td>
<td>21.24</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>0-600</td>
<td>0.06</td>
<td>46.26</td>
</tr>
<tr>
<td>KARIMNAGAR</td>
<td>0-300</td>
<td>0.00</td>
<td>45.43</td>
</tr>
<tr>
<td></td>
<td>300-600</td>
<td>0.15</td>
<td>67.70</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>0-600</td>
<td>0.15</td>
<td>113.13</td>
</tr>
<tr>
<td>WARANGAL</td>
<td>0-300</td>
<td>32.20</td>
<td>89.79</td>
</tr>
<tr>
<td></td>
<td>300-600</td>
<td>3.03</td>
<td>13.68</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>0-600</td>
<td>35.23</td>
<td>103.47</td>
</tr>
<tr>
<td>KHAMMAM</td>
<td>0-300</td>
<td>13.46</td>
<td>58.66</td>
</tr>
<tr>
<td></td>
<td>300-600</td>
<td>6.56</td>
<td>40.73</td>
</tr>
<tr>
<td>SUB TOTAL</td>
<td>0-600</td>
<td>20.02</td>
<td>99.39</td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>0-300</td>
<td>45.66</td>
<td>218.90</td>
</tr>
<tr>
<td></td>
<td>300-600</td>
<td>9.80</td>
<td>143.35</td>
</tr>
<tr>
<td></td>
<td>0-600</td>
<td>55.46</td>
<td>362.25</td>
</tr>
</tbody>
</table>

Coal Demand

The consumption of coal during 1997-98 was about 323.38 million tonnes of which 67% was consumed for generating electricity, 13% for production of steel, 4% for manufacture of cement and the balance 16% in other industries like textiles, fertilisers, refractories, brick, kilns etc. The projected coal demand is as follows:
Table 1.4. PROJECTED DEMAND (Million Tonnes)

<table>
<thead>
<tr>
<th></th>
<th>1997-98</th>
<th>2001-02</th>
<th>2009-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEEL</td>
<td>41.4</td>
<td>51.6</td>
<td>68.0</td>
</tr>
<tr>
<td>ELECTRICITY</td>
<td>222.0</td>
<td>287.8</td>
<td>500.0</td>
</tr>
<tr>
<td>CEMENT</td>
<td>18.2</td>
<td>21.4</td>
<td>37.0</td>
</tr>
<tr>
<td>OTHERS</td>
<td>41.78</td>
<td>51.4</td>
<td>85.0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>323.38</td>
<td>412.2</td>
<td>690.0</td>
</tr>
</tbody>
</table>

Source: www.Coalindustry.com

Coal availability

Coal production, by and large has kept pace with demand until now to meet the overall requirement of various consuming sectors except the steel sector. About 10 million tonnes of low ash coking coal is currently being imported annually, partly to meet the shortfall in domestic availability and partly for blending for improving the quality of the blend. Besides over 2 million tonnes of steam coal is also being imported by coastal power plants and some cement plants.

On the basis of an exercise carried out for estimation of total demand and production for the period 1997-98 to 2009-10, the following picture has emerged.

Table 1.5. Estimation of Demand and Production of Coal (Million tones)

<table>
<thead>
<tr>
<th></th>
<th>1997-98</th>
<th>2001-02</th>
<th>2006-07</th>
<th>2009-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>323.38</td>
<td>412.2</td>
<td>563</td>
<td>690</td>
</tr>
<tr>
<td>Availability (From Existing Coal Companies)</td>
<td>298</td>
<td>371</td>
<td>443</td>
<td>530</td>
</tr>
<tr>
<td>Imports</td>
<td>10</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Gap</td>
<td>10</td>
<td>22</td>
<td>101</td>
<td>160</td>
</tr>
</tbody>
</table>
To meet this growing demand of coal, public sector coal companies have drawn their production programme, which shows wide gap between Demand and Supply. From a level of 10 metric tonnes in 1997-98 the gap increases to 160 metric tonnes in 2009-10. The main reasons for widening gap between demand and indigenous availability are:

- Government budgetary support to public sector coal companies was 95% till 1990, which has now come down to 10% of the plan outlay.
- Public sector alone cannot meet increasing demand of coal.
- Administered pricing structure has not been remunerative enough to generate investible surplus.
- Development of new mines is not taken up for reasons of non-viability etc.
- Mining areas where production can be increased rapidly do not have adequate transport infrastructure.

To meet the galloping coal demand for power sector, an additional annual production capacity build-up of around 25 mt is required, to produce additionally about 375 mt over the next 15 years. An investment of about Rs. 50,000 crores (US $ 11.6 bn) at current prices will be required. Absence of Government budgetary support to the public sector coal companies would make private investment in the coal sector imperative and inescapable

Potential mining blocks have reserves of coal of inferior grades, with high ash content (42-45%). In order to produce boiler feed coal of required quality (less than 34% ash), beneficiation of run-of mine coal will be necessary. Govt. companies will not be able to set up coal washeries, because of the financial crunch already faced by them. The
option then left is to go for setting up of washeries by private entrepreneurs.

Need for Improvement in Quality of Coal

Coal fired Thermal Power Plants in India presently receive 100% raw coal. The quality and size contents are often quite variable and there are wide variations in quality & size. The average ash content of all thermal coals presently being used in India is about 40%. High ash and wide fluctuations in quality of coal and excessive free dirt in the coal fed to thermal power plants are the principal reasons for low Plant Load Factor (PLF) in India. The average PLF of thermal power plants in India is below 60%—compared to International standard of 85 to 90% PLF. The lack of thermal coal washing in India compares with about 20% of coal washed in China, 30% in USA and over 70% in Europe and Australia. The ash contents of Thermal Coal deliveries to power plants in the USA and Europe are much lower than in India (Approximately 10% ash in the USA, 18% ash in Europe and about 25% ash in China). Because of high ash and inconsistent quality, considerable oil support is required in India.

It is recognized that Indian coals contain high proportion of inherent ash. It is often not practical to wash these coals to below 25% economically, because of very low yield due to difficult washability characteristics of thermal coal in India. However, the delivery of product that has uniform top size (minus 75/100mm), a uniform ash content of 30% to 35% and is devoid of extraneous material such as stones, metal bars, timber, overburden contaminants, may be very attractive to Electric Power utilities.

The extent of reduction in ash content needed will be dictated by the distance at which thermal power plants are located from the coal mines and by other economic considerations. With use of washed coal, the power plant can operate at higher level of efficiency. Many studies have shown the economic advantages of improved and consistent coal quality, which include substantial
savings in transportation costs, more efficient combustion, less ash disposal and less Carbon dioxide emissions. Apart from cost savings due to improved operational efficiency, the environmental related benefits of coal washing can be significant.

Field trials in two power stations with washed coal have shown encouraging results. A test conducted at the Chandrapura Thermal Power Station showed an average increase of 2% availability for every percentage drop in the ash content (in the range of ash content 28-38%).

The development of core infrastructure sectors like Power, Steel, and Cement etc are dependent on coal. In India, for optimum development of coal industry the draft 11th Five Year Plan (2007-2012) outlines certain steps to be taken to ensure that the demand for coal in the developing economy is fully met.

It has been felt that the Government would not be able to find sufficient capital investment for carrying out speedy and large exploration and for opening up new coal mines to augment the coal production. Therefore, the involvement of private sector in commercial coal mines has become inevitable. The Government has already taken steps to earmark coal-mining blocks for captive development of coal mines for the Power, Steel and Cement Sectors. However, there are plethora of procedures, which are required to be streamlined before these coal-mining blocks could be operated. The development of rail and port infrastructure require greater attention, since the existing facilities are not able to meet large movement of coal required from coal producing centres to consuming centers as also for moving imported coal.

Recent notification by the Government for feeding coal with 34% ash to Power Stations located beyond 1000 kms from pit head from 2001 AD onwards has necessitated setting up of coal washery projects immediately. This again would have to be taken up by the private sector since public sector coal companies now find it very difficult to arrange huge capital for setting up of coal washeries. The development of coal mining blocks is also closely linked with the Environment and Forest issues as also with the rehabilitation of the
population presently living over the land in these blocks. These issues need to be addressed and resolved. The clearance of the coal projects for domestic or foreign investment also needs to be speedily done since all the projects take long years for implementation.

There is another large issue involved for efficient running of the public sector coal companies. In the first place management autonomy is to be granted and coal-mining operations in the public sector have to be made more efficient. World Bank has sanctioned a loan of over one billion dollars for improving the operations in the mines of Coal India Limited.

Electricity generation and distribution is largely controlled by the State Governments in India. The Government has realised that huge demand of electricity cannot be met by State sector alone and therefore private sector participation is required for setting up Power Stations and also take up transmission work. With these in view, the Government has embarked on National Energy Policy and taken steps for carrying out reforms and deregulation in the power sector.

The steps currently being taken in India for carrying out reforms and deregulation in power and coal sectors, are in the right direction and it is strongly felt that if these steps are properly implemented the coal demand for electricity generation will be fully met.

Need of the Study:
Coal industry plays a strategic role in the industrial development of the country. Despite the development of alternative fuel sources like electricity, petrol and solar energy, coal continues to be used as a major fuel material in many industries. Coal is considered as the alternative source of energy and is given prime importance in the national economy after the oil crisis. Coal industry is a moving and labour oriented industry engaged in extracting the coal. Since working in coal mines is considered to be hazardous the coal miners are being provided with various social security schemes. Considering the importance of the coal industry, sincere attempts are to be made to solve
its problems including the problems related to human resources. The coal industry and its production stand as a golden spot in the economic development of any economy. Basically the coal industry is labour intensive. The production of any organisation is the result of joint efforts of all the factors of production, i.e. land, capital, organisation, human resources etc. Human resource, unlike other factors of production, is an active factor controls all other factors and coordinates them to get the maximum output at minimum cost. Human resources are an important element of cost also. By adopting proper human resource management practices, any organisation can reduce its cost of production by utilizing the human resources engaged in production effectively and efficiently.

There is a need for evolving an effective human resource management concept, which is consistent with the findings of a behavioral science research. Recent studies have been attempting to find out how an employee can be stimulated in a given work situation to utilise his energies for the benefit of the industry in the changing globalised market economy scenario. There is an imperative need for the coal industry to tap the potentiality of human resource, which is available in abundance in, rural as well as in urban areas. The growth and success of any enterprise largely depend on the efficiency of its human resources, which is influenced by the organizational policies and practices. This workforce will have to be properly nurtured, motivated, rewarded and counselled to bring out the best in them. Therefore, human resource management practices, which are concerned with the human side of the enterprise, have a major role to play for the success of any industry.

The Singareni Collieries Company Limited has gigantic infrastructure, enough mineral stocks and massive exploration experience in coal mining. The company's sorry state of affairs was caused by labour problems and over 100 confronting trade unions compelled the company to deliver a low quality end product. Due to Contribution of various factors, Viz., Industrial un-rest, difficult geo-mining conditions, administered coal prices etc; the company hit rock-bottom in 96-97 with the accumulated losses amounting to Rs.1219 Crores.
As a result the company was referred to BIFR in 1992 and 1996. Then SCCL took a set of visionary, bold & courageous initiative, which helped company to achieve a stunning turnaround. Implementation of reforms from 1997 resulted in spectacular turnaround by 2003 –04. The financial Health was ushered in 2003 – 04 when the accumulated losses of Rs. 1219 crores were wiped out and the SCCL entered into net profit (after a gap of 37 years). It paid dividend to share holders after 27 years. In 2004-2005 the company earned a net profit of Rs.361.26 crores. The HRM initiatives taken by the company played a vital role for this spectacular turnaround story. Hence the need for the present study which attempts to analyse the human resource management practices in Singareni Collieries Company Limited, a Government Company.

OBJECTIVES OF THE STUDY:

The main objective of the study is to enquire into the HRM& HRD practices in the first generation public enterprise of AP i.e., in Singareni Collieries Company Limited.

The other objectives of study are:

1. To present a canvas of the status, progress and performance of SCCL as a back drop to the study

2. To examine and evaluate HRM practices which include recruitment and selection, Training and Development, performance appraisal, promotional policies, welfare, wage and salary administration, Industrial Relations etc.

3. To enquire into the HRD practices adopted in SCCL.

4. To bring out and explain the practices of the select categories of HRD on various aspects of HR management and development practices

5. To evaluate the HR initiatives that made the company turnaround.

6. To suggest policy prescriptions for effective HR management in the company.
Scope of the study:

Though the manpower management in its broader sense covers all employees working in Singareni Collieries Company Limited, the present study is restricted to study the human resource management of employees working in SCCL. For the purpose of study 'employees' are deemed to be persons who are actually engaged in mining work in below ground and opencast mine. The present study confines to the aspects of recruitment and selection, training and development, performance appraisal and promotional avenues, and wage and salary administration of employees in SCCL. Further the study is opened for human resource development practices and the Industrial Relations scenario at SCCL.

Period of the study:

The study is designed to cover the period between 1986-87 and 2005-06 i.e., 20 years, for the analysis of the secondary data relating to various aspects of the unit under study. The present study i.e., human resource management practices is basically primarily database. The perceptional survey of different categories of human resources is carried out during the year 2005-06. Though the study covers a period of 20 years for inferences and analysis, specific focus is given to the period after the economic and structural reforms because a number of challenges have emerged in the scenario of human resource management and development in post reforms era. Further the study gives special emphasis for the period from 1997 to 2006, which is a golden era in the history of the company.

SOURCES OF DATA:

The study is based on both primary and secondary data. The main source of primary data is the opinions of executives, administrative staff and field staff in SCCL. The sources of secondary data pertaining to the study are:

a) The annual reports of SCCL

b) Office records and documents of various departments of SCCL.
c) Reports of the Director Generals of Mines safety, Government of India Dhanbad.

METHODOLOGY:

The methodology adopted for collection of primary data, selection of the sample and data analysis is presented below.

COLLECTION OF PRIMARY DATA

For the purpose of collecting primary data from the sample a schedule has been designed and executed to the respondents. Observation method has been used in few cases to cross check the information collected through other methods. To have a clear information and understanding about mining conditions and environment in the below ground, the researcher made a number of visits to SCCL. The researcher went to the underground blasting area, which is 500 meters below the ground and practically seen the procedures involved in collection of coal. The researcher made an attempt to understand the hard working conditions of the below ground coal miners. The researcher further observed the implementation of the Safety measures in the under ground mine.

SAMPLE SIZE

For administrative control, the SCCL is divided into 3 regions namely Kothagudem, Bellampally and Ramagundam. These three regions are again divided into 12 areas. While selecting the sample of employees for the study, multi stage random sampling technique has been used. At the first stage all the three regions have been selected on census basis. At second stage, one area from each region was selected based on purposive sampling. On this basis 12 below ground mines were selected from 12 areas. To this, three open cast coal mines were added to represent the condition pertaining to the company. Thus the total sample comprises 15 mines. While choosing the mines, due weightage is given to factors like location and age of mines. Based on purposive sampling and to represent various categories of human resources, a total sample of 540 was taken.
The Manpower strength of SCCL in 2005-06 is 86025 which included executives, administrative staff and field staff. As the population is very large, the population survey becomes unmanageable. Therefore the sample of employees is restricted to 540, which consist of 90 executives, 210 administrative staff, and 240 field staff, which is selected on random sampling method.

Table 1.6 Designation wise classification of respondents

<table>
<thead>
<tr>
<th>Designation</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executives</td>
<td>90</td>
<td>(16.67)</td>
</tr>
<tr>
<td>Administrative Staff</td>
<td>210</td>
<td>(38.89)</td>
</tr>
<tr>
<td>Field Staff</td>
<td>240</td>
<td>(44.44)</td>
</tr>
<tr>
<td>Total</td>
<td>540</td>
<td>(100.00)</td>
</tr>
</tbody>
</table>

44
DATA ANALYSIS

While analyzing the quantitative data of the study, simple statistical tools like growth rates (as explained below), percentages and different financial ratios have been used keeping in view the nature of data available and its suitability.

The simple growth rate:

It simply gives the percent increase over the previous year.

\[
g = \left(\frac{y_t - y_{t-1}}{y_{t-1}} \right) \times 100
\]

\(g\) = growth rate.

\(y_t\) and \(y_{t-1}\) = values of variables

\(y\) = \(y\) in years of \(t-1\)

Compound growth rate: It works out charges for a given period on the basis of the base year and end year.

\[
g = \left[\left(\frac{y_1}{y_0} \right)^\left(\frac{t}{t-1} \right) \right]^{100}
\]

\(y_1\) = variable at the end of the period.

\(y_0\) = variable at the base year of the period

\(t\) = difference of the years between end and base years.

\(g\) = Compound Annual Rate of Growth

LIMITATIONS OF THE STUDY

(A). The primary data collected through schedules contained the responses of workers, trade union leaders and executives. In some situations the workers and trade union leaders might have over stated their problems and grievances, whereas executives might have understated the problems of workers.
Sometimes, secondary data is collected from more than one source. Referring to another source filled the gaps in one source. There may be some discrepancies if the data is not correctly reported in the sources referred to. Regarding the secondary data collected from various sources the authenticity of the data is circumscribed by the reliability of the data reported by authorities.

While collecting the data at the corporate level the executives did not cooperate in supplying the required data from the documents, hence the policy issues could not be discussed in depth.

In some cases field staff could not respond properly to the questions directly due to lack of understanding about certain terms used in the schedule.

CHAPTER LAYOUT:

The study is presented in 7 chapters. The first chapter is introductory in nature. It introduces the human resource management and the coal industry in detail. It also explains the objectives, scope, and period of the study, sample design, sources of data, methodology adopted, limitations of study and chapter layout. 2nd Chapter is a canvas for the review of literature. The third chapter is devoted to present the profile of SCCL. This chapter also unleashes different dimensions of SCCL like historical perspectives and performance of SCCL in terms of investment, production, productivity, profitability, and contribution to exchequer. This chapter also analyses the strategies which inter-alia include the HRM initiatives which the company adopted to turnaround in a spectacular manner. The fourth chapter is devoted to explain various Human Resource Management practices such as recruitment and selection, training and development, performance appraisal and promotional avenues, wage and salary administration and Welfare measures. Fifth chapter focuses on human resource development practices in SCCL. Sixth chapter analyzes employees’ perception on different HRM related aspects. And the seventh chapter presents the Findings/ conclusions of the study and suggestions.