CONTENTS

Chapter 1 INTRODUCTION AND REVIEW OF LITERATURE

- **1.1 Introduction**
- **1.2 Definition**
- **1.3 Identifiability**
 - **1.3.1 Definition**
- **1.4 Estimation of parameters**
- **1.5 Estimation of number of components**
- **1.6 Fields of applications**
- **1.7 Mixture distributions in reliability analysis**
- **1.8 Basic concepts in reliability**
 - **1.8.1 Reliability function**
 - **1.8.2 Hazard rate**
 - **1.8.3 Mean residual life**
- **1.9 Reliability and hazard based on finite mixture models**
- **1.10 Censoring**
 - **1.10.1 Type I censoring**
 - **1.10.2 Type II censoring**
 - **1.10.3 Other types of censoring**
- **1.11 Stress-strength models**
 - **1.11.1 Estimation of system reliability**
- **1.12 Mixture models in income analysis**
- **1.13 Basic economic concepts**
 - **1.13.1 Lorenz curve**
- **1.14 Present study**
Chapter 2 FINITE MIXTURE OF PARETO II DISTRIBUTIONS

2.1 Introduction 23
2.2 Definition and properties 24
2.3 Reliability characteristics 25
2.4 Identifiability 29
2.5 Estimation of parameters 30
2.6 Complete sample set up 30
2.6.1 Estimation of parameters when the observations belonging to each subpopulation are known 30
2.6.2 Estimation of parameters when the observations belonging to each subpopulation are unknown 36
2.7 Censored set up 41
2.7.1 Estimation based on type I censored samples when the observations belonging to each subpopulation are known 42
2.7.2 Estimation based on type I censored samples when the observations belonging to each subpopulation are unknown 47
2.7.3 Estimation based on type II censored samples 51
2.8 Simulation study 55
2.9 Data analysis 61
2.10 Conclusion 63

Chapter 3 FINITE MIXTURE OF BETA DISTRIBUTIONS

3.1 Introduction 64
3.2 Definition and properties 65
3.3 Reliability characteristics 66
3.4 Identifiability 70
3.5 Estimation of parameters 71
3.6 Complete sample set up 71
<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.1 Estimation of parameters when the</td>
<td>71</td>
</tr>
<tr>
<td>observations belonging to each subpopulation are known</td>
<td></td>
</tr>
<tr>
<td>3.6.2 Estimation of parameters when the</td>
<td>78</td>
</tr>
<tr>
<td>observations belonging to each subpopulation are unknown</td>
<td></td>
</tr>
<tr>
<td>3.7 Censored set up</td>
<td>83</td>
</tr>
<tr>
<td>3.7.1 Estimation based on type I censored</td>
<td>83</td>
</tr>
<tr>
<td>samples when the observations belonging to</td>
<td></td>
</tr>
<tr>
<td>each subpopulation are known</td>
<td></td>
</tr>
<tr>
<td>3.7.2 Estimation based on type I censored</td>
<td>88</td>
</tr>
<tr>
<td>samples when the observations belonging to</td>
<td></td>
</tr>
<tr>
<td>each subpopulation are unknown</td>
<td></td>
</tr>
<tr>
<td>3.7.3 Estimation based on type II censored</td>
<td>92</td>
</tr>
<tr>
<td>samples</td>
<td></td>
</tr>
<tr>
<td>3.8 Simulation study</td>
<td>96</td>
</tr>
<tr>
<td>3.9 Data analysis</td>
<td>102</td>
</tr>
<tr>
<td>3.10 Conclusion</td>
<td>104</td>
</tr>
</tbody>
</table>

Chapter 4 BAYESIAN PREDICTIVE DISTRIBUTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>105</td>
</tr>
<tr>
<td>4.2 Definition</td>
<td>106</td>
</tr>
<tr>
<td>4.3 Predictive distribution and reliability</td>
<td>108</td>
</tr>
<tr>
<td>estimation</td>
<td></td>
</tr>
<tr>
<td>4.4 Bayesian two-sample prediction for finite</td>
<td>108</td>
</tr>
<tr>
<td>mixture of Pareto II distributions</td>
<td></td>
</tr>
<tr>
<td>4.5 Data analysis</td>
<td>120</td>
</tr>
<tr>
<td>4.6 Bayesian two-sample prediction for finite</td>
<td>120</td>
</tr>
<tr>
<td>mixture of beta distributions</td>
<td></td>
</tr>
<tr>
<td>4.7 Data analysis</td>
<td>131</td>
</tr>
<tr>
<td>4.8 Conclusion</td>
<td>131</td>
</tr>
</tbody>
</table>
Chapter 5 ESTIMATION OF RELIABILITY UNDER STRESS-STRENGTH MODEL

5.1 Introduction 132
5.2 Definition 133
5.3 Finite mixture of Pareto II distributions 133
5.3.1 The stress Y follows exponential distribution 134
5.3.2 The stress Y follows Pareto II distribution 134
5.3.3 The stress Y follows finite mixture of Pareto II distribution 135
5.4 Estimation of parameters 136
5.4.1 Exponential distribution 136
5.4.2 Pareto II distribution 138
5.4.3 Finite mixture of Pareto II distributions 139
5.5 Estimation of stress-strength reliability 139
5.6 Simulation study 141
5.7 Data analysis 148
5.8 Finite mixture of beta distributions 148
5.8.1 The stress Y follows exponential distribution 149
5.8.2 The stress Y follows beta distribution 149
5.8.3 The stress Y follows finite mixture of beta distributions 150
5.9 Estimation of parameters 151
5.9.1 Exponential distribution 151
5.9.2 Beta distribution 151
5.9.3 Finite mixture of beta distributions 153
5.10 Estimation of stress-strength reliability 153
5.11 Simulation study 154
5.12 Conclusion 158