LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Chemical composition of typical laterite</td>
<td>9</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Physical properties of cement</td>
<td>48</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Physical properties of fine aggregate.</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Physical properties of coarse aggregate (Crushed granite)</td>
<td>51</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Physical properties of weathered laterite all-in aggregate from various sources</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Chemical properties of weathered laterite all-in aggregate collected from various sources</td>
<td>54</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Typical properties of Rheobuild SP-1i Superplasticiser</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Typical properties of Glenium B - 233</td>
<td>57</td>
</tr>
<tr>
<td>Table 3.8</td>
<td>Physical and chemical properties of fly ash</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.9</td>
<td>Physical and chemical properties of ground granulated blast furnace slag (GGBFS)</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Materials required for 1 m3 of control concrete</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Workability properties of concrete</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Test results of LCF series</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Properties of control concrete and LCA concrete series</td>
<td>75</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Properties of control concrete and laterised concrete made with different grades of OPC</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Cube compressive strength of concrete with different replacement level of supplementary cementitious materials</td>
<td>80</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Physical and mechanical properties CCFL, LCFL, CCGG and LCGG</td>
<td>83</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Comparison of modification factor</td>
<td>87</td>
</tr>
</tbody>
</table>
Table 5.2 Mix proportion for 1 m3 of LSCC with fly ash as addition 89
Table 5.3 Properties of LSCC with fly ash as addition at fresh stage 92
Table 5.4 Comparison of properties of LSCC with fly ash and GGBFS as additions at fresh stage ... 93
Table 5.5 Compressive strength of LSCC with fly ash as addition 94
Table 5.6 Split tensile strength and modulus of rupture for various grades of LSCC with fly ash as addition .. 95
Table 5.7 Modulus of elasticity of LSCC with fly ash as addition 96
Table 5.8 Comparison of strength properties of LSCC with fly ash and GGBFS as additions ... 97
Table 6.1 Cube compressive strength of concrete after the exposure to elevated temperature ... 101
Table 6.2 Cylinder compressive strength of concrete after exposure to elevated temperature ... 102
Table 6.3 Flexural strength of concrete after the exposure to elevated temperature ... 121
Table 6.4 Cylinder split tensile strength of concrete after the exposure to elevated temperature ... 122
Table 6.5 Modulus of elasticity of concrete after the exposure to elevated temperature ... 139
Table 6.6 Unit mass of concrete after the exposure to elevated temperature 151
Table 6.7 Modulus of rupture of ferrocement element at elevated temperature ... 161
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Distribution of laterites and associated soils in the tropics and ...</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Particle size distribution curve for fine aggregates</td>
<td>50</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Particle size distribution curve for laterite coarse aggregates</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>View of weathered laterite aggregate deposit at Cochin (CUSAT)</td>
<td>53</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Closer view of weathered laterite aggregate deposit at Cochin (CUSAT)</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Test setup for slump measurement</td>
<td>61</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Shear testing apparatus developed for testing shear</td>
<td>64</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Shear specimen ready for loading</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Shear specimens after failure</td>
<td>65</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Standard temperature-temperature rise curve</td>
<td>67</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Photograph of furnace with specimens kept ready for heating</td>
<td>97</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Photograph of furnace immediately after reaching required temperature</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Variation of cube compressive Strength of CC and LC with various ...</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Variation of cube compressive Strength of CC and LC with various ...</td>
<td>81</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Flow pattern of M20 grade LSCC (Typical)</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>V- Funnel Test for M30 grade LSCC (Typical)</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>L-Box test for M25 grade LSCC (Typical)</td>
<td>90</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Percentage reduction in cube compressive strength of concrete with</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>temperature after air cooling</td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.2 Percentage reduction in cube compressive strength of concrete with temperature after water cooling. ... 104

Figure 6.3 Percentage reduction in cylinder compressive strength of concrete with temperature after air cooling. ... 104

Figure 6.4 Percentage reduction in cylinder compressive strength of concrete with temperature after water cooling. ... 105

Figure 6.5 Percentage reduction in cube compressive strength of concrete with temperature after air cooling. ... 106

Figure 6.6 Percentage reduction in cube compressive strength of concrete with temperature after water cooling. ... 107

Figure 6.7 Percentage reduction in cylinder compressive strength of concrete with temperature after air cooling. ... 107

Figure 6.8 Percentage reduction in cylinder compressive strength of concrete with temperature after water cooling. ... 108

Figure 6.9 Percentage reduction in cube compressive strength of concrete with temperature after air cooling. ... 109

Figure 6.10 Percentage reduction in cube compressive strength of concrete with temperature after water cooling. ... 109

Figure 6.11 Percentage reduction in cylinder compressive strength of concrete with temperature after air cooling. ... 110

Figure 6.12 Percentage reduction in cylinder compressive strength of concrete with temperature after water cooling. ... 110

Figure 6.13 Percentage reduction in cube compressive strength of self compacting concrete with temperature after cooling under different environments 112
Figure 6.14 Percentage reduction in cylinder compressive strength of self compacting concrete with temperature after air cooling under different environments. ... 112

Figure 6.15 Percentage reduction in cube compressive strength of concrete with temperature after air cooling. ... 113

Figure 6.16 Percentage reduction in cube compressive strength of concrete with temperature after water cooling. ... 114

Figure 6.17 Percentage reduction in cylinder compressive strength of concrete with temperature after air cooling. ... 115

Figure 6.18 Percentage reduction in cylinder compressive strength of concrete with temperature after water cooling. ... 115

Figure 6.19 Cube compressive strength-temperature relationship of CC. 116

Figure 6.20 Cube compressive strength-temperature relationship of LCF. 116

Figure 6.21 Cube compressive strength-temperature relationship of LCAC53. 117

Figure 6.22 Cube compressive strength-temperature relationship of CCFL20. 117

Figure 6.23 Cube compressive strength-temperature relationship of LCFL20. 118

Figure 6.24 Cube compressive strength-temperature relationship of CCGG25. 118

Figure 6.25 Cube compressive strength-temperature relationship of LCGG25. 119

Figure 6.26 Scatter diagram of the cube compressive strength of laterised concrete modified with supplementary cementitious materials when exposed to elevated temperature... 120

Figure 6.27 Percentage reduction in split tensile strength of concrete with temperature after air cooling. ... 123

Figure 6.28 Percentage reduction in split tensile strength of concrete with temperature after water cooling... 124
Figure 6.29 Percentage reduction in flexural strength of concrete with temperature after air cooling.. 124

Figure 6.30 Percentage reduction in flexural strength of concrete with temperature after water cooling... 125

Figure 6.31 Percentage reduction in split tensile strength of concrete with temperature after air cooling... 125

Figure 6.32 Percentage reduction in split tensile strength of concrete with temperature after water cooling..................................... 126

Figure 6.33 Percentage reduction in flexural strength of concrete with temperature after air cooling.. 126

Figure 6.34 Percentage reduction in flexural strength of concrete with temperature after water cooling.. 126

Figure 6.35 Percentage reduction in split tensile strength of concrete with temperature after air cooling... 127

Figure 6.36 Percentage reduction in split tensile strength of concrete with temperature after water cooling..................................... 128

Figure 6.37 Percentage reduction in flexural strength of concrete with temperature after air cooling.. 128

Figure 6.38 Percentage reduction in flexural strength of concrete with temperature after water cooling.. 129

Figure 6.39 Percentage reduction in split tensile strength of laterised self compacting concrete with temperature under different cooling environment.. 130

Figure 6.40 Percentage reduction in flexural strength of laterised self compacting concrete with temperature under different cooling environment...................... 131
Figure 6.41 Percentage reduction in split tensile strength of concrete with temperature after air cooling... 132
Figure 6.42 Percentage reduction in split tensile strength of concrete with temperature after water cooling... 132
Figure 6.43 Percentage reduction in flexural strength of concrete with temperature after air cooling... 133
Figure 6.44 Percentage reduction in flexural strength of concrete with temperature after water cooling... 133
Figure 6.45 Split tensile strength-temperature relationship of CC................................. 134
Figure 6.46 Split tensile strength- temperature relationship of LCF................................. 135
Figure 6.47 Split tensile strength- temperature relationship of LCAC53......................... 135
Figure 6.48 Split tensile strength-temperature relationship of CCFL20.......................... 136
Figure 6.49 Split tensile strength-temperature relationship of LCFL20......................... 136
Figure 6.50 Split tensile strength-temperature relationship of CCGG25......................... 137
Figure 6.51 Split tensile strength-temperature relationship of LCGG25......................... 137
Figure 6.52 Scatter-gram of the test results of split tensile strength of laterised self compacting concrete with temperature.. 138
Figure 6.53 Percentage reduction in modulus of elasticity of concrete with temperature after air cooling... 140
Figure 6.54 Percentage reduction in modulus of elasticity of concrete with temperature after water cooling... 140
Figure 6.55 Percentage reductions in modulus of elasticity of concrete with temperature after air cooling... 141
Figure 6.56 Percentage reduction in modulus of elasticity of concrete with temperature after water cooling... 141
Figure 6.57 Percentage reduction in modulus of elasticity of concrete with
temperature after air cooling. ... 142
Figure 6.58 Percentage reduction in modulus of elasticity of concrete with
temperature after water cooling. .. 142
Figure 6.59 Percentage reduction in modulus of elasticity of concrete with
temperature after air cooling. ... 144
Figure 6.60 Percentage reduction in modulus of elasticity of concrete with
temperature after water cooling. .. 144
Figure 6.61 Modulus of elasticity-temperature relationship of CC. 146
Figure 6.62 Modulus of elasticity-temperature relationship of LCF. 146
Figure 6.63 Modulus of elasticity-temperature relationship of LCAC53. 147
Figure 6.64 Modulus of elasticity-temperature relationship of CCFL20............. 147
Figure 6.65 Modulus of elasticity-temperature relationship of LCFL20............. 148
Figure 6.66 Modulus of elasticity-temperature relationship of CCGG25. 148
Figure 6.67 Modulus of elasticity-temperature relationship of LCGG25......... 149
Figure 6.68 Scatter-gram of the test results of modulus of elasticity of laterised
concrete having supplementary cementitious materials with
temperature. .. 150
Figure 6.69 Percentage variation of unit mass of concrete exposed to high
temperature .. 152
Figure 6.70 Average shear strength-curing age relationship. 153
Figure 6.71 Typical major crack in CC heated to 600°C-overall view. 154
Figure 6.72 Typical major crack in CC heated to 600°C-closer view. 155
Figure 6.73 Comparison of crack pattern of CCFL specimen heated to 800°C and
600°C ... 155
Figure 6.74 Typical crack pattern on LSCCF at 600°C under air cooling 156
Figure 6.75 Typical crack pattern on LSCCG at 600°C under air cooling-closer view. .. 157

Figure 6.76 Typical crack pattern on LSCCF at 600°C under water cooling. 157

Figure 6.77 Typical colour change of laterised concrete at elevated temperature 158

Figure 6.78 Load - deformation diagram of ferrocement element (SFE1) exposed to elevated temperature. .. 160

Figure 6.79 Scatter-gram of the test results of modulus of rupture of ferrocement element made with LSCCF having fly ash as addition with temperature. .. 162

Figure 6.80 Typical crack pattern on specimen heated to 600°C and cooled with sprinkling of water. .. 163