CONTENTS

<table>
<thead>
<tr>
<th>PAGE NO.</th>
<th>1</th>
<th>INTRODUCTION</th>
<th>1-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OBJECTIVES</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REVIEW OF LITERATURE</td>
<td>4-33</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Heavy metals</td>
<td>5-6</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Beneficial heavy metals</td>
<td>6-7</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Toxic heavy metals</td>
<td>7-8</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Occurrence of heavy metals in the environment</td>
<td>9-10</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>The effects of heavy metals to human health</td>
<td>11-12</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Bacterial tolerance against heavy metals</td>
<td>12-21</td>
<td></td>
</tr>
<tr>
<td>3.6.1</td>
<td>Resistance to cadmium</td>
<td>14-16</td>
<td></td>
</tr>
<tr>
<td>3.6.2</td>
<td>Resistance to copper</td>
<td>16-17</td>
<td></td>
</tr>
<tr>
<td>3.6.3</td>
<td>Resistance to mercury</td>
<td>17-18</td>
<td></td>
</tr>
<tr>
<td>3.6.4</td>
<td>Resistance to nickel</td>
<td>18-20</td>
<td></td>
</tr>
<tr>
<td>3.6.5</td>
<td>Resistance to zinc</td>
<td>20-21</td>
<td></td>
</tr>
<tr>
<td>3.6.6</td>
<td>Resistance to lead</td>
<td>21-30</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Mechanism used by microorganism to tolerate heavy metal toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7.1</td>
<td>Volatilization</td>
<td>22-24</td>
<td></td>
</tr>
<tr>
<td>3.7.2</td>
<td>Detoxification by binding to the cell surface</td>
<td>24-25</td>
<td></td>
</tr>
<tr>
<td>3.7.3</td>
<td>Extracellular precipitation of metal salts</td>
<td>25-26</td>
<td></td>
</tr>
<tr>
<td>3.7.4</td>
<td>Efflux or exclusion of metal salts</td>
<td>26-27</td>
<td></td>
</tr>
<tr>
<td>3.7.5</td>
<td>Intracellular accumulation</td>
<td>27-30</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Significance of microbial tolerance to heavy metals</td>
<td>31-33</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>MATERIALS AND METHODS</td>
<td>34-71</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>GENERAL MICROBIOLOGICAL STUDIES</td>
<td>35-38</td>
<td></td>
</tr>
<tr>
<td>4.1.1</td>
<td>Isolation and purification of the microorganisms</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4.1.2</td>
<td>Characterization and identification of metal removing bacteria</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4.1.3</td>
<td>Study of Colonial Morphology</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>4.1.4</td>
<td>Study of Cellular Morphology</td>
<td>35-38</td>
<td></td>
</tr>
<tr>
<td>4.1.4.1</td>
<td>Gram staining</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4.1.4.2</td>
<td>Capsule staining</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4.1.4.3</td>
<td>Endospore staining</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>4.1.4.4</td>
<td>Measurement of microorganisms</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>
4.1.4.5 Motility test

4.2 BIO-CHEMICAL TESTS FOR BACTERIAL CHARACTERIZATION
4.2.1 Fermentation of carbohydrates
4.2.2 Amylase production test
4.2.3 Oxidase test
4.2.4 Catalase test
4.2.5 DNase test
4.2.6 Lipase assay
4.2.7 Protease assay
4.2.8 Antibiotic resistance test
4.2.9 Effect of pH on Growth of Isolated Bacteria
4.2.10 Effect of Temperature on Growth of Isolated Bacteria
4.2.11 Effect of pH on Metal Tolerance of isolated Bacteria
4.2.12 Determination of minimum inhibitory concentrations (MIC) of heavy metals

4.3 MOLECULAR BIOLOGICAL STUDIES
4.3.1 DNA extraction
4.3.1.1 Rapid bacterial DNA extraction – "Boiling Method"
4.3.1.2 Bacterial DNA extraction
4.3.2 Electrophoresis
4.3.2.1 Agarose gels and DNA visualisation
4.4 Polymerase chain reaction

4.5 16S rRNA PCR
4.6 Dna sequencing
4.7 Phylogenetic analysis of representative bacterial strains
4.8 Nucleotide sequence submission for getting accession number from genbank

4.9 ANALYTICAL STUDIES
4.9.1 Heavy metal analysis in removal assays
4.9.1.1 Heavy metal solutions
4.9.1.2 Study of metal accumulation in Nutrient broth by bacterial cells
4.9.1.3 Procedure for copper estimation in biosorption study
4.9.1.4 Procedure for lead estimation in biosorption study
4.9.1.5 Procedure for nickel estimation in biosorption study
4.9.1.6 Atomic absorption spectrophotometry
4.10 GENETIC STUDIES ... 52-63
4.10.1 Small Scale Plasmid DNA Preparation ... 52
4.10.2 Purification of Plasmid DNA Using Phenol and Chloroform ... 53
4.10.3 Restriction Endonuclease Digestion ... 53-55
4.10.4 Curing of Plasmid ... 55-56
4.10.4.1 Curing by the Use of Mutagen ... 55-56
4.10.4.2 Curing by Serial Dilution Method ... 56
4.10.5 Transformation study ... 56-63
4.10.5.1 Preparation of E. coli DH5α Competent Cells ... 56-57
4.10.5.2 Transformation in E. coli DH5α ... 57
4.10.5.3 Southern blotting and hybridization ... 57-63
4.10.5.3.1 Procedure Of Southern Blotting ... 58-59
4.10.5.3.2 Radiolabelling Of DNA - Probe Synthesis ... 59-61
4.10.5.3.3 Prehybridization ... 61
4.10.5.3.4 Hybridization ... 61-62
4.10.5.3.5 Post hybridization Washes and Signal Development ... 62-63
4.11 GENERAL BIOCHEMICAL STUDIES ... 64-71
4.11.1 Study of Involvement of Protein in Metal Resistance ... 64
4.11.2 Extraction of Protein from Bacterial Cells ... 64-65
4.11.3 Protein purification ... 65
4.11.4 Quantitative Analysis of Protein ... 65-67
4.11.4.1 Lowry’s method for quantitative protein estimation ... 65-67
4.11.4.1.1 Sample preparation ... 66
4.11.4.1.2 Requirements: Chemicals and reagents ... 66
4.11.4.1.3 Procedure ... 67
4.11.4.2 SDS-Polysaccharide Gel Electrophoresis ... 68-69
4.11.4.2.1 Preparation of Loading Samples ... 68
4.11.4.2.2 Preparation of Gel and Sample Loading ... 68-69
4.11.4.2.3 Staining and Destaining of Gel ... 69
4.11.5.1 Production, extraction and purification of EPS ... 69-71
4.11.5.1 General test for detection of carbohydrates ... 70
4.11.5.2 Test for Monosaccharide and Oligosaccharide ... 70
4.11.5.3 Thin layer Chromatographic Test ... 70
5. ISOLATION AND IDENTIFICATION OF HEAVY METAL TOLERANT BACTERIA ...

5.1 INTRODUCTION ...
5.2 MATERIALS AND METHODS ...
5.2.1 Sample collection, enumeration and isolation of the heterotrophic populations ...
5.2.2 Isolation media ...
5.2.3 Media composition and preparation ...
5.2.4 Buffer solutions ...
5.2.5 Morphological and biochemical characteristics of representative strains ...
5.2.6 Phylogenetic analysis of representative bacterial strains ...
5.2.7 Determination of heavy metal tolerance of the representative strains of the isolated population ...

5.3 RESULTS AND DISCUSSION ...
5.3.1 Isolation of bacterial isolates from waste water sample ...
5.3.2 Identification of bacterial isolates ...
5.3.3 Study of morphological characteristics ...
5.3.3.1 Study of colonial morphology ...
5.3.3.2 Study of cellular morphology ...
5.3.4 Biochemical studies of isolated bacteria ...
5.3.5 Determination of heavy metal resistance ...
5.3.6 Minimum inhibitory concentrations (MICs) of heavy metals ...
5.3.7 Study of antibiotic resistance ...
5.3.8 Effect of temperature and pH on growth ...
5.3.9 Phylogenetic analysis of the recovered populations ...
5.3.10 Metal tolerance for growth ...

6. OPTIMIZATION OF THE ENVIRONMENTAL VARIABLES FOR THE REMOVAL OF THE SELECTIVE HEAVY METALS ...

6.1 INTRODUCTION ...
6.2 MATERIALS AND METHODS ...
6.2.1 Lead (Pb$^{2+}$), Copper (Cu$^{2+}$) and Nickel (Ni$^{2+}$) Tolerance ...
6.2.2 Effect of pH on Cu$^{2+}$, Ni$^{2+}$ and Pb$^{2+}$ Biosorption ...
6.2.3 Effect of Biomass on Cu$^{2+}$, Ni$^{2+}$ and Pb$^{2+}$ Biosorption ...
6.2.4 Effect of temperature on Cu$^{2+}$, Ni$^{2+}$ and Pb$^{2+}$ Biosorption ...
6.2.5 Effect of initial metal concentration on Cu$^{+2}$, Ni$^{+2}$, and Pb$^{+2}$ Biosorption ... 109

6.3 RESULTS AND DISCUSSION ... 109-135

7. OPTIMIZATION OF THE BACTERIAL EXTRACELLULAR POLYSACCHARIDE PRODUCTION AND EVALUATION OF THE EPS IN METAL BIOABSORPTION ... 136-148

7.1 INTRODUCTION ... 137-138

7.2 MATERIALS AND METHODS ... 138-140
7.2.1 Production, extraction and purification of EPS ... 138-139
7.2.2 General test for detection of carbohydrates ... 139
7.2.3 Biomass as metal biosorption ... 139
7.2.4 Biosorption experiments ... 139-140
7.3 RESULTS AND DISCUSSION ... 140-148

8. INVOLVEMENT OF PLASMID GENE(S) IN METAL RESISTANCE ... 149-161

8.1 INTRODUCTION ... 150-151
8.2 MATERIALS AND METHODS ... 152-153
8.2.1 Determination of minimum inhibitory concentrations (MIC) of heavy metals ... 152
8.2.2 Plasmid curing ... 152
8.2.3 Plasmid DNA isolation ... 153
8.2.4 Transformation and Southern blot analysis ... 153
8.3 RESULTS AND DISCUSSION ... 153-160

9. INVOLVEMENT OF METAL-BINDING PROTEIN(S) FOR THE BIOSORPTION ... 161-171

9.1 INTRODUCTION ... 162-163
9.2 MATERIALS AND METHOD ... 163-164
9.2.1 Strains and growth conditions ... 163
9.2.2 Study of Involvement of Protein in Metal Resistance ... 163-164
9.2.3 Preparation of cell extract ... 164
9.2.4 Protein purification ... 164-165
9.2.5 Estimation of Protein Content in Samples ... 165
9.2.6 SDS-Polysaccharide Gel Electrophoresis ... 165
9.3 RESULTS AND DISCUSSION ... 165-171
10. INTEGRATED DISCUSSION ... 172-186
11. FINDING AND CONCLUSION ... 187-191
12. REFERENCES ... 192-220
13. PUBLICATIONS ... 221