CONCLUSION

Considering the scope, the limitations and the result of the study, the following conclusions have been drawn:

1) The ankle and knee joint angles have an important role to play both in instep and inside instep at initial phase as well as at contact phase for different level male soccer players for maximum ball velocity performance. The ankle and knee joint angles were found to significantly influence the ball velocity at different levels.

2) The ankle and hip joint angles have an important role to play both in instep and inside instep kicks at follow through phase for different level male soccer players for maximum ball velocity performance. The joint angles were found to significantly influence the ball velocity at different levels.

3) The ankle and hip joint axis displacement of different level players at initial to contact phase in instep kick have a significant role in ball velocity performance. But only knee joint axis displacement has shown contributing significant role in inside instep kick.

4) All the joint (ankle, knee and hip) axis displacement does play a part in maximizing ball velocity of different level players at contact to follow through phase in instep kick. But in inside
instep hip joint axis displacement does not fractionally contributes in ball velocity.

5) The angular velocity of ankle and knee joints both contributes significantly in inside instep kick to cause variation in the ball velocity of all level players. But none of the joint’s angular velocity significantly differed to contribute to cause variation in ball velocity.

6) In inside instep kicks, all joints and in all levels, the linear velocity is not a factor to cause variations in ball velocity. But in case of instep kick, all joints (ankle, knee and hip joints) and for all level players, the linear velocity is an accountable factor to cause variations in ball velocity.

7) The variations of the segment kinematics among different level of players are responsible for the significant differences ball velocity during both instep and inside instep soccer kicks.

8) The divergent mechanical distinction of instep and inside instep soccer kick exhibits variation in the ball velocity amongst same level (high-high, medium-medium, and low-low) of players.