List of Tables

Table-1: Showing infection levels (total number of external hyphae, internal hyphae, entry points, vesicles, arbuscules, and % infection) in maize, paddy and potato crops in valley practice in the year 1996.

Table-2: Showing infection levels (total number of external hyphae, internal hyphae, entry points, vesicles, arbuscules, and % infection) in maize, paddy and potato crops in valley practice in the year 1997.

Table-3: Showing infection levels (total number of external hyphae, internal hyphae, entry points, vesicles, arbuscules, and % infection) in maize, paddy and potato crops in terrace practice in the year 1996.

Table-4: Showing infection levels (total number of external hyphae, internal hyphae, entry points, vesicles, arbuscules, and % infection) in maize, paddy and potato crops in terrace practice in the year 1997.

Table-5: Showing infection levels (total number of external hyphae, internal hyphae, entry points, vesicles, arbuscules, and % infection) in maize, paddy and potato crops in jhum practice in the year 1996.

Table-6: Showing infection levels (total number of external hyphae, internal hyphae, entry points, vesicles, arbuscules, and % infection) in maize, paddy and potato crops in jhum practice in the year 1997.

Table-7: Showing correlation coefficient (r) values among various infection levels i.e. external hyphae (E.H), internal hyphae (I.H), entry points (E.P), vesicles (V), arbuscules (A) and % infection in valley practice in 1996 and 1997 in maize, paddy and potato crops.
Table-8:- Showing correlation coefficient (r) values among various infection levels i.e external hyphae (E.H), internal hyphae (I.H), entry points (E.P), vesicles (V), arbuscules (A) and % infection in terrace practice in 1996 and 1997 in maize, paddy and potato crops.

Table-9:- Showing correlation coefficient (r) values among various infection levels i.e external hyphae (E.H), internal hyphae (I.H), entry points (E.P), vesicles (V), arbuscules (A) and % infection in jhum practice in 1996 and 1997 in maize, paddy and potato crops.

Table-9(a):- Showing diversity index values of VAM spores / g dry soil in valley, terrace and jhum practices.

Table-9(b):- Showing diversity index values of VAM spores / g cast soil in valley, terrace and jhum practices.

Table-9(c):- Showing diversity index values of VAM spores / g dry gut content in valley, terrace and jhum practices.

Table-10:- Showing correlation coefficient (r) values among various transfer levels of nitrogen in valley practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-11:- Showing correlation coefficient (r) values among various transfer levels of phosphorus in valley practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-12:- Showing correlation coefficient (r) values among various transfer levels of potassium in valley practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.
Table-13: Showing correlation coefficient (r) values among various transfer levels of nitrogen in valley practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-14: Showing correlation coefficient (r) values among various transfer levels of phosphorus in valley practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-15: Showing correlation coefficient (r) values among various transfer levels of potassium in valley practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-16: Showing correlation coefficient (r) values among various transfer levels of nitrogen in terrace practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-17: Showing correlation coefficient (r) values among various transfer levels of phosphorus in terrace practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-18: Showing correlation coefficient (r) values among various transfer levels of potassium in terrace practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-19: Showing correlation coefficient (r) values among various transfer levels of nitrogen in terrace practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-20: Showing correlation coefficient (r) values among various transfer levels of phosphorus in terrace practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.
Table-21: Showing correlation coefficient (r) values among various transfer levels of potassium in terrace practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-22: Showing correlation coefficient (r) values among various transfer levels of nitrogen in jhum practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-23: Showing correlation coefficient (r) values among various transfer levels of phosphorus in jhum practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-24: Showing correlation coefficient (r) values among various transfer levels of potassium in jhum practice from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-25: Showing correlation coefficient (r) values among various transfer levels of nitrogen in jhum practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-26: Showing correlation coefficient (r) values among various transfer levels of phosphorus in jhum practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-27: Showing correlation coefficient (r) values among various transfer levels of potassium in jhum practice from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-28: Showing correlation coefficient (r) values among various transfer levels of nitrogen in valley practice soil from 30 to 180 days in maize, paddy and potato crops in pure cropping system.
Table-29:- Showing correlation coefficient (r) values among various transfer levels of phosphorus in valley practice soil from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-30:- Showing correlation coefficient (r) values among various transfer levels of potassium in valley practice soil from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-31:- Showing correlation coefficient (r) values among various transfer levels of nitrogen in valley practice soil from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-32:- Showing correlation coefficient (r) values among various transfer levels of phosphorus in valley practice soil from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-33:- Showing correlation coefficient (r) values among various transfer levels of potassium in valley practice soil from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-34:- Showing correlation coefficient (r) values among various transfer levels of nitrogen in terrace practice soil from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-35:- Showing correlation coefficient (r) values among various transfer levels of phosphorus in terrace practice soil from 30 to 180 days in maize, paddy and potato crops in pure cropping system.

Table-36:- Showing correlation coefficient (r) values among various transfer levels of potassium in terrace practice soil from 30 to 180 days in maize, paddy and potato crops in pure cropping system.
Table-37: Showing correlation coefficient (r) values among various transfer levels of nitrogen
in terrace practice soil from 30 to 180 days in maize, paddy and potato crops in mixed
cropping system.

Table-38: Showing correlation coefficient (r) values among various transfer levels of
phosphorus in terrace practice soil from 30 to 180 days in maize, paddy and potato crops in
mixed cropping system.

Table-39: Showing correlation coefficient (r) values among various transfer levels of
potassium in terrace practice soil from 30 to 180 days in maize, paddy and potato crops in
mixed cropping system.

Table-40: Showing correlation coefficient (r) values among various transfer levels of
nitrogen in jhum practice soil from 30 to 180 days in maize, paddy and potato crops in pure
cropping system.

Table-41: Showing correlation coefficient (r) values among various transfer levels of
phosphorus in jhum practice soil from 30 to 180 days in maize, paddy and potato crops in pure
cropping system.

Table-42: Showing correlation coefficient (r) values among various transfer levels of
potassium in jhum practice soil from 30 to 180 days in maize, paddy and potato crops in pure
cropping system.

Table-43: Showing correlation coefficient (r) values among various transfer levels of
nitrogen in jhum practice soil from 30 to 180 days in maize, paddy and potato crops in mixed
cropping system.

Table-44: Showing correlation coefficient (r) values among various transfer levels of
phosphorus in jhum practice soil from 30 to 180 days in maize, paddy and potato crops in mixed
cropping system.
Table-45:- Showing correlation coefficient (r) values among various transfer levels of potassium in jhum practice soil from 30 to 180 days in maize, paddy and potato crops in mixed cropping system.

Table-46:- Showing VAM compatibility and growth of crop plants in 30 days pure cropping system.

Table-47:- Showing VAM compatibility and growth of crop plants in 60 days pure cropping system.

Table-48:- Showing VAM compatibility and growth of crop plants in 90 days pure cropping system.

Table-49:- Showing VAM compatibility and growth of crop plants in 120 days pure cropping system.

Table-50:- Showing VAM compatibility and growth of crop plants in 150 days pure cropping system.

Table-51:- Showing VAM compatibility and growth of crop plants in 180 days pure cropping system.

Table-52:- Showing VAM compatibility and growth of crop plants in 30 days mixed cropping system.

Table-53:- Showing VAM compatibility and growth of crop plants in 60 days mixed cropping system.

Table-54:- Showing VAM compatibility and growth of crop plants in 90 days mixed cropping system.

Table-55:- Showing VAM compatibility and growth of crop plants in 120 days mixed cropping system.

Table-56:- Showing VAM compatibility and growth of crop plants in 150 days pure cropping system.
Table-57.- Showing VAM compatibility and growth of crop plants in 180 days pure cropping system.

Table-58.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in maize crop of valley practice soil.

Table-59.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in paddy crop of valley practice soil.

Table-60.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in potato crop of valley practice soil.

Table-61.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in maize crop of terrace practice soil.

Table-62.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in paddy crop of terrace practice soil.

Table-63.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in potato crop of terrace practice soil.

Table-64.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in maize crop of jhum practice soil.

Table-65.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in paddy crop of jhum practice soil.

Table-66.- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (pure) in net house pot experiment in potato crop of jhum practice soil.
Table-67:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in maize crops of valley practice soil.

Table-68:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in paddy crops of valley practice soil.

Table-69:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in potato crops of valley practice soil.

Table-70:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in maize crops of terrace practice soil.

Table-71:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in paddy crops of terrace practice soil.

Table-72:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in potato crops of terrace practice soil.

Table-73:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in maize crops of jhum practice soil.

Table-74:- Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in paddy crops of jhum practice soil.
Table-75 Showing correlation coefficient (r) values among various infection levels and growth of crop plants (mixed) in net house pot experiment in potato crops of jhum practice soil.