Introduction
I INTRODUCTION

Millets are the most important cereals of the semi-arid tropics of the world; for millions of people in Africa and Asia, they are the staple crops. Among millet crops, the finger millet figures prominently and it ranks forth in importance after sorghum, pearl millet and foxtail millet. Finger millet cultivation is more widespread in terms of its geographical adaptation compared to other millets and has the ability to withstand varied conditions of heat, drought, humidity and tropical weather. The annual world planting area of finger millet is estimated at around 4-4.5 million hectares with a total production around 5 million tonnes of grains of which India alone produces about 2.2 million tonnes.

In spite of all these advantages, finger millet has been a neglected crop, both at national and as well as global level. The finger millet is presumed to have originated from the highlands of East Africa. The archeological evidence of finger millet from Ethiopia date to about the third millennium BC. (Hilu et al, 1979). The two main races of finger millet recognized are the African highlands race and Afro-Asiatic low land race. (Mehra, 1962). The migration of finger millet to India is likely to have occurred around 3000 BC. The long history of cultivation in India for more than 5000 years since then accompanied with human selection has resulted in the generation of large diversity in the land races and cultivars of India (Naik, 1990).

It is evident now that the cultivars of finger millet grown in India and Africa are highly variable and harbor large diversity. However, there are not many studies on comparing the nature and quantum of variability present in African and Indian germplasm. Identification of useful germplasm from the point of utilization in crop improvement is the first step in encouraging optimum utilization. Utilization of African germplasm in finger millet crop improvement has been receiving due attention for some years now in India and
this has enhanced the diversity of cultivars. However, there exists still large scope for enhancing the utility of exotic collections and this warrants precise information on the depth of variability existing in African finger millet collections vis a vis Indian collections. Keeping this in view, the present investigation was designed by choosing a cross section of African and Indian collections for an in-depth diversity assessment and comparison. The main objectives of the study were to:

- Compare the genetic diversity in Indian and African germplasm for agronomic and productivity traits.
- Study relationships among various quantitative traits in each group and understand its implications on yield.
- Identify genetically diverse germplasm possessing useful traits including resistance for blast disease for utilization in crop improvement.