List of Tables

3.1 Calculated and Experimental C_p of LHE-4 at SVP near T_x 71

3.2 Calculated values of α_p, κ_T and β of LHE-4 at SVP near T_x 73

4.1 Different Parameters (equations 4.8 and 4.9) for sc, bcc, fcc and hcp arrangements 91

4.2 $E(Q)$, V_p and V_g for sc arrangement 92

4.3 $E(Q)$, V_p and V_g for bcc arrangement 93

4.4 $E(Q)$, V_p and V_g for fcc arrangement 94

4.5 $E(Q)$, V_p and V_g for hcp arrangement 95

4.6 $E(Q)$ for sc arrangement for different Q_{max} (in \AA^{-1}) 96

4.7 V_p and V_g for sc arrangement for different Q_{max} (in \AA^{-1}) 97

4.8 $E(Q)$ for bcc arrangement for different Q_{max} (in \AA^{-1}) 98

4.9 V_p and V_g for bcc arrangement for different Q_{max} in (\AA^{-1}) 99

4.10 $E(Q)$ for fcc arrangement for different Q_{max} (in \AA^{-1}) 100

4.11 V_p and V_g for fcc arrangement for different Q_{max} (in \AA^{-1}) 101

4.12 $E(Q)$ for hcp arrangement for different Q_{max} (in \AA^{-1}) 102

4.13 V_p and V_g for hcp arrangement for different Q_{max} (in \AA^{-1}) 103

4.14 Different Parameters (Equations 4.11 and 4.12) for sc, bcc, fcc and hcp arrangements 104

4.15 $E(Q)$, V_p and V_g for sc arrangement 105
4.16 E(Q), V_p and V_g for bcc arrangement 106
4.17 E(Q), V_p and V_g for fcc arrangement 107
4.18 E(Q), V_p and V_g for hcp arrangement 108

5.1 Energy Gap, Coherence length and Critical Velocity 133
5.2 Calculated Values of \(\rho_n \) and \(\rho_s \) using Energy Gap 134
5.3 Calculated Values of \(\rho_n \) and \(\rho_s \) from the Excited Number of Particles 135
5.4 Normal and Super-fluid Density Ratio 136
5.5 Critical Angular Velocity and Other Quantities 137
5.6 Critical Velocities in Helium Film 138

6.1 Ratio of the estimated effective mass to real mass of the helium atom at different pressures. Effective mass is obtained using the observed transition temperature in equation 6.3 157
6.2 Values of \(P_{ij} \) and corresponding numbers of atoms 158
6.3 Nearest neighbour distance for different atomic arrangements ... 160
6.4 Potential energy for sc arrangement 161
6.5 Potential energy on the surface for sc arrangement 162
6.6 Excess surface energy for sc arrangement 163
6.7 Potential energy for bcc arrangement 164
6.8 Potential energy on the surface for bcc arrangement 165
6.9 Excess surface energy for bcc arrangement 166
6.10 Potential energy for fcc arrangement 167
6.11 Potential energy on the surface for fcc arrangement 168
6.12 Excess surface energy for fcc arrangement 169
6.13 Potential energy for hcp arrangement 170
6.14 Potential energy on the surface for hcp arrangement 171
6.15 Excess surface energy for hcp arrangement 172

6.16 Comparison of our computed potential energies of helium-II (in units of K/atom) at T=0 with some other theoretical as well as experimental results. 173

6.17 Calculated values of the surface tension of helium-II at different temperatures. These values do not include the contribution of ripplon or thermal disturbance present in the system 174

6.18 Excess energy (in units of K/atom) at different atomic layers 175

6.19 Comparison of our calculated surface tension and surface thickness at T = 0 with some other theoretical calculation and experimental observations 177