CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>CONDUCTING POLYMERS - AN INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Historical background of the development of conducting polymers</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Mechanism of electrical conduction in conducting polymers</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Chemical synthesis of conducting polymers</td>
<td>12</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Polypyrrole</td>
<td>13</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Polyacetylene</td>
<td>14</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Polymethylphenylene sulphone</td>
<td>14</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Polypyrrole</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Electrochemical synthesis</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Doping methods</td>
<td>16</td>
</tr>
<tr>
<td>1.7</td>
<td>Effect of doping on polymers</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>Stable and processable conducting polymers</td>
<td>19</td>
</tr>
<tr>
<td>1.9</td>
<td>Electrochemical property-Cyclic voltammetry</td>
<td>19</td>
</tr>
<tr>
<td>1.10</td>
<td>Progress towards technology</td>
<td>20</td>
</tr>
<tr>
<td>1.11</td>
<td>Work undertaken in the present study</td>
<td>22</td>
</tr>
<tr>
<td>References</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 2	**PREPARATION AND CHARACTERIZATION OF CONDUCTING POLYPYRROLES**	27
2.1	General introduction	27
2.2	Chemical oxidative polymerization of polypyrrole	28
2.3	Electrochemical polymerization of polypyrrole	29
2.4	Mechanism of electrochemical polymerization	30
2.5	Experimental set-up for the electrochemical polymerization of polypyrrole films	32
2.6	Characterization of polypyrroles	34
2.6.1	UV-visible spectroscopy	34
2.6.2	Infrared spectroscopy	35
2.6.3	Scanning electron microscopy (SEM)	36
2.6.4	Cyclic voltammetry studies	38
2.6.5	TG and DTA studies	39
2.6.6	Ultrasonic studies	39
2.6.7	X-ray analysis	40
References	41	
CHAPTER 3
SYNTHESIS OF CERTAIN CONDUCTING POLYPYRROLES
AND STUDY OF THEIR DC CONDUCTIVITY

3.1. Introduction
3.2. Experimental set-up for conductivity measurements
3.2.1. Four point probe method
3.2.2. Two probe method
3.3. Conductivity cell
3.4. Keithly electrometer
3.5. Work included in this chapter

Section A
3.6. Electrochemical synthesis of conducting polypyrrole films using ammonium molybdate and traces of sulphuric acid as electrolyte and study of their DC conductivity
3.6.1. Introduction
3.6.2. Experimental details
3.6.3. Measurement of electrical conductivity
3.6.4. Results and discussion
3.6.5. Effect of the treatment of PPy(MoO₄)²⁻ films with aqueous sodium hydroxide solution on their electrical conductivity
3.6.6. Effect of alternate treatment with base and acid on conductivity

Section B
3.7. Electrochemical synthesis of polypyrrole films using molybdic acid as an electrolyte and investigation of their DC conductivity
3.7.1. Introduction
3.7.2. Experimental
3.7.3. DC conductivity measurements
3.7.4. Results and discussion
3.7.5. Effect of the treatment of PPy(MoO₄)²⁻ films with aqueous sodium hydroxide solution on their electrical conductivity
3.7.6. Effect of alternate treatment with base and acid on conductivity

Section C
3.8. Electrochemical synthesis of polypyrrole films using molybdic acid as an electrolyte and investigation of their DC conductivity
3.8.1. Introduction
3.8.2. Experimental
3.8.3. Results and discussion
3.8.4. Effect of the treatment of PPy(MoO₄)²⁻ films with aqueous sodium hydroxide solution on their electrical conductivity
3.8.5. Effect of alternate treatment with base and acid on conductivity

Section D

3.9. Chemical polymerization of pyrrole using orthophosphoric acid and investigation of DC conductivity of polypyrrole films
3.9.1. Introduction
3.9.2. Experimental details
3.9.3. Results and discussion

Section E

3.10. Preparation of characterization of a chemically prepared polypyrrole powder, soluble in acetone, an organic solvent
3.10.1. Introduction
3.10.2. Experimental details
3.10.3. DC conductivity studies
3.10.4. Results and discussion

Conclusion

References

CHAPTER 4
INFRARED SPECTROSCOPY STUDIES

4.1. General Introduction
4.2. IR spectroscopy of polymers
4.3. Interpretation of spectra
4.3.1. Hetero aromatic compounds
4.3.2. C-H stretching vibrations
4.3.3. N-H stretching vibrations
4.3.4. Ring stretching vibrations
4.3.5. C-H out-of-plane bending
4.4. Work included in this chapter
4.5. Experimental details
4.6. Results and discussion
4.6.1. Infrared spectra of PPy(MoO₄)²⁻ films prepared electrochemically using aqueous solution of ammonium molybdate and trace at H₂SO₄ as the electrolyte
4.6.2. Infrared spectra of PPy(MoO₄)²⁻ films prepared electrochemically using aqueous solution of molybdc as the electrolyte
4.6.3. Infrared spectra of PPy(PO₄)³⁻ films prepared electrochemically using aqueous solution of orthophosphoric acid as the electrolyte
4.6.4. FTIR spectra of PPy(PO₄)³⁻ films prepared chemically using orthophosphoric acid in acetonitrile as the oxident
4.6.5. FTIR spectra of PPy(P0$_4^-$) powder prepared chemically using orthophosphoric acid in acetone as the oxidant

Conclusion
References

CHAPTER 5 ULTRAVIOLET-VISIBLE SPECTROSCOPY STUDIES

5.1. Introduction
5.2. Experimental
5.3. Results and discussion
Conclusion
References

CHAPTER 6 CYCLIC VOLTAMMETRIC STUDIES

6.1. Introduction
6.2. Experimental procedure
6.3. Pretreatment of platinum electrode
6.4. Cyclic voltammogram studies of PPy(MoO$_4^{2-}$) films using an aqueous solution of ammonium molybdate and H$_2$SO$_4$ as the electrolyte
6.5. Cyclic voltammogram studies of PPy(MoO$_4^{2-}$) films using an aqueous solution of molybdic acid as the electrolyte
6.6. Cyclic voltammogram studies of PPy(P0$_4^-$) films using an aqueous solution of orthophosphoric acid as the electrolyte
Conclusion
References

CHAPTER 7 ULTRASONIC STUDIES IN POLYPYRROLE SAMPLES

7.1. Introduction
7.2. Ultrasonic studies in polymers
7.3. Ultrasonic velocity measurement methods
7.3.1. Pulse-echo-overlap (PEO) method
7.3.2. Pulse-echo-overlap system
7.4. Work done in the present study
7.5. Experimental details
7.6. Results and discussion
Conclusion
References

CHAPTER 8 THERMOGRAVIMETRY, DIFFERENTIAL THERMAL ANALYSIS AND X-RAY STUDIES IN SOME POLYPYRROLE SAMPLES

8.1. Introduction
8.2. Experimental
8.3. Results and discussion
Conclusion
References