CHAPTER – VII

SPLITTING GRAPHS

In this chapter, we study the domination number of splitting graph and we relate the domination number of splitting graph $S(G)$ with total domination number of G. Also we prove that if $S(G)$ is HI then G is HI but the converse is not true. Further, it is shown that G is NHI if and only if $S(G)$ is NHI.

7.1. INTRODUCTION: Splitting graphs were first introduced and studied by Sampathkumar and Walikar [21]. Given a graph G, for each point v of G take a new point v' and join v' to all points of G adjacent to v. The graph thus obtained is called the splitting graph of G and is denoted by $S(G)$. If G is a (p, q) graph then $S(G)$ is a $(2p, 3q)$ graph and degree of v in $S(G)$ is twice the degree of v in G and degree of v' in $S(G)$ is equal to the degree of v in G. A graph G is a splitting graph if and only if $V(G)$ can be partitioned into two sets V_1, V_2 such that there exists a bijectition $f : V_1 \rightarrow V_2$ satisfying $N(f(v_1)) = N(v_1) \cap V_1$ for every $v_1 \in V_1$. In this chapter we relate the domination number of splitting graph $S(G)$ with total domination number of G. We also find the domination number of $S(G)$ for certain specific graphs G.

157
7.1.1. Definition: For each point \(v \) of a graph \(G \), take a new point \(v' \). Join \(v' \) to all points of \(G \) adjacent to \(v \). The graph \(S(G) \) thus obtained is called splitting graph of \(G \).

7.1.2. Example:

\[\begin{align*}
 \text{Fig. 3} & & \text{Fig. 4}
\end{align*} \]

7.1.3. Theorem: If \(S(G) \) is HI then \(G \) is HI.

Proof: Suppose \(S(G) \) is HI. To show that \(G \) is HI.
Let \(u \in V(G) \). Let \(v, w \in N(u) \cap V \), then \(d_{S(G)}(v) = 2d_G(v) \), \(d_{S(G)}(w) = 2d_G(w) \). Since \(d_{S(G)}(v) \neq d_{S(G)}(w) \) We get, \(2d_G(v) \neq 2d_G(w) \). Therefore \(d_G(v) \neq d_G(w) \). Therefore \(G \) is HI.

7.1.4. Remark: The converse is not true. For in fig. 5.

\[
N(u_2) = \{u_1, u_1', v_2, v_2', u_3, u_3'\}, \quad d_{S(G)}(u_1) = 2, \quad d_{S(G)}(u_3') = 2.
\]

![Fig. 5](image)

7.1.5. Theorem: \(G \) is NHI if and only if \(S(G) \) is NHI.

Proof: Let \(G \) be NHI. Let \(u \in V(G) \). Let \(v, w \in N(u) \).

159
Case(i) : \(v, w \in V(G)\). Then \(N[v] \cap V \neq N[w] \cap V\).

Therefore \(N[v] \neq N[w]\).

Case(ii) : \(v \in V, w \in V'\) (similar proof if \(v \in V'\) and \(w \in V\)). Let \(w = x'\) (\(x \neq u\) since if \(x = u\) then \(x' = u'\) is not adjacent to \(u\). That is \(w\) is not adjacent to \(u\), a contradiction). Therefore \(x \in N(u)\). Since \(x' = w\) is adjacent to \(u\). Now \(N[v] \cap V \neq N[x] \cap V\) Therefore there exist a point \(y \in N[v] \cap V\) such that \(y \notin N[x] \cap V\). Therefore \(u\) is not adjacent to \(x\) and hence \(y\) is not adjacent to \(x'\). Thus \(y\) is not adjacent to \(w\). Consequently, \(y\) is not in \(N[w] \cap V\). Therefore \(N[v] \cap V \neq N[w] \cap V\). Therefore \(N[v] \neq N[w]\).

Case(iii) : \(v, w \in V'\). Let \(v = x'\), \(w = y'\). Clearly \(x \neq u\), \(y \neq u\).

Therefore \(x, y \in N(u)\) and hence \(N[x] \cap V \neq N[y] \). This implies that there exist a point \(z \in N[x] \cap V\) such that \(z \notin N[y] \cap V\). So, \(z\) is not adjacent to \(y\) which shows that \(z\) is not adjacent to \(y'\). Therefore \(z\) is not adjacent to \(w\). That is \(z \notin N[w] \cap V\). Since \(z \in N[x] \cap V\), \(z\) is adjacent to \(x\) and so \(z\) is adjacent to \(x'\). That is \(z \in N[x'] \cap V = N[v] \cap V\).
V. Hence $N[v] \cap V \neq N[w] \cap V$. That is $N[v] \neq N[w]$. Conversely, suppose $S(G)$ is NHI. Let $u \in V(G)$. Let $v, w \in N(u) \cap V$. Given $N[v] \neq N[w]$. To show that $N[v] \cap V \neq N[w] \cap V$.

Suppose $N[v] \cap V = N[w] \cap V$ ------- (1)

Let $x' \in N(v) \cap V$ then x' is adjacent to v. Therefore x is adjacent to v. and so $x \in N[v] \cap V = N[w] \cap V$. That is x is adjacent to w. Consequently x' is adjacent to w. Therefore $x' \in N[w] \cap V'$. That is $N[v] \cap V' \subseteq N[w] \cap V'$ Interchanging the role of v and w we get,

$N[w] \cap V' \subseteq N[v] \cap V'$.

Therefore $N[v] \cap V' = N[w] \cap V'$ ------- (2)

From (1) and (2), $N[v] = N[w]$ in $S(G)$, a contradiction. Therefore $N[v] \cap V \neq N[w] \cap V$. Therefore G is NHI.

7.2. Domination in splitting graphs:

161
7.2.1. Observation: If G is a graph with $\gamma(G) = 1$ then $\gamma(S(G)) = 2$.

Hence $\gamma(S(K_n))$, $\gamma(S(K_{1,n}))$, $\gamma(S(w_n))$ are all 2.

7.2.2. Observation: $\gamma(S(K_{mn})) = 2$.

7.2.3. Observation: For $n \geq 2$,

$$\gamma(S(P_n)) = \begin{cases} 2 \frac{ln}{4} + 1 & \text{if } n \equiv 1 \pmod{4} \\ 2 \frac{n}{4} - 1 & \text{otherwise} \end{cases}$$

For: If $V(P_n) = \{v_1, v_2, \ldots, v_n\}$ then $\{v_{4i-1}, v_{4i-2} : i = 1, 2, \ldots, k\}$, $\{v_{4i-1}, v_{4i-2} : i = 1, 2, \ldots, k\} \cup \{v_{4k}\}$ and $\{v_{4i-1}, v_{4i-2} : i = 1, 2, \ldots, k\} \cup \{v_{4k+1}, v_{4k+2}\}$ are dominating sets of $S(P_n)$ when $n = 4k$, $4k + 1$, $(4k + 2$ and $4k + 3$) respectively.

Let D be a dominating set of $S(p_n)$. Then without loss of generality, $D \subseteq V(P_n)$. For any 4 consecutive points, $v_i, v_{i+1}, v_{i+2}, v_{i+3}$ we have to take a minimum of two points to dominate these four points and their corresponding points. If $n = 4k$ then D must contain a minimum of $2k$ points. Therefore $|D| \geq 2k$ for any dominating set of D. That is, $\gamma(S(P_n)) \geq 2k = 2 \frac{n}{4} - 1$.

162
Therefore \(\gamma(S(P_n)) = 2 \sqrt{n/4} \) if \(n \equiv 0 \) (mod 4)

When \(n = 4k + 1 \) by the above argument \(|D| \geq 2k + 1 = 2 \sqrt{n/4} + 1 \).

Therefore \(\gamma(S(P_n)) = 2 \sqrt{n/4} + 1 \).

When \(n = 4k + 2 \) or \(4k + 3 \), \(|D| \geq 2k + 2 = 2 \sqrt{n/4} + 1 \).

7.2.4. Observation: \(\gamma(S(C_n)) = \begin{cases}
2 \sqrt{n/4} + 1 & \text{if } n \equiv 0 \text{ (mod 4)} \\
2 \sqrt{n/4} & \text{Otherwise}
\end{cases} \)

For: \{ v_{4k+1}, v_1, v_2, v_5, v_6, \ldots, v_{4k-3}, v_{4k-2} \}, \{ v_1, v_2, v_5, v_6, \ldots, v_{4k+1}, v_{4k+2} \} are dominating sets of \(S(C_n) \) when \(n = 4k+1 \) or \(n = (4k+2, 4k+3, 4k+4) \) respectively.

Let \(D \) be a dominating set of \(S(C_n) \). Then without loss of generality \(D \subseteq V(C_n) \). For any 4 consecutive points \(v_i, v_{i+1}, v_{i+2}, v_{i+3} \) we have to take a minimum of two points to dominate these four points and their corresponding points. If \(n = 4k \) then \(D \) must contain a minimum of \(2k \) points.

Therefore \(|D| \geq 2k \) for any dominating set of \(D \). (ie) \(\gamma(S(C_n)) \geq 2k = 2 \sqrt{n/4} \). Therefore \(\gamma(S(C_n)) = 2 \sqrt{n/4} \) if \(n \equiv 0 \) (mod 4).
When \(n = 4k + 1 \) by the above argument \(|D| \geq 2k + 1 = 2 \lfloor n/4 \rfloor + 1 \).

Therefore \(\gamma(S(C_n)) = 2 \lfloor n/4 \rfloor + 1 \).

When \(n = 4k + 2 \) or \(4k + 3 \), \(|D| \geq 2k + 2 = 2 \lceil n/4 \rceil \).

Therefore \(\gamma(S(C_n)) = 2 \lceil n/4 \rceil \).

7.2.5. Lemma: Let \(G \) be a graph. Let \(V(S(G)) = V_1 \cup V_1' \) where \(V_1 = V(G) \). Let \(D \) be a minimum dominating set of \(G \). Then \(x \in D \) is an independent point of \(D \) if and only if \(x' \) is not adjacent to any point of \(D \).

Proof: For \(u \in D \), Define \(N'(u) = \{ v' \in V_1' : v \in N(u) \} \). Let \(x' \in V_1' \) such that \(x \) is not adjacent to any point of \(D \). Therefore \(x' \notin N'(u) \) for every \(u \in D \). Consider the corresponding point \(x \in v_1 \).

Therefore \(x \notin N(u) \) \(\forall u \in D \). Therefore \(x \in D \) and \(x \) is not adjacent to any point of \(D \). The converse is Obvious.

7.2.6. Lemma: \(\gamma(S(G)) \leq \gamma(G) + q \leq 2 \gamma(G) \) where \(q \) is the number of independent points in a minimum dominating set with least number of independent points.
Proof: Let D be a minimum dominating set of G with least number of independent points say q. Let $\{x_1, x_2, \ldots, x_q\}$ be the set of independent points of D. Then $D_1 = D \cup \{x_1', x_2', \ldots, x_q'\}$ is a dominating set of $S(G)$. (For if $y \in V_1$ and $y \notin \{x_1', x_2', \ldots, x_q'\}$ then by lemma 2.5, y is not an independent point of D. Therefore y is adjacent to some $y_1 \in D$. Therefore y' is adjacent to $y_1 \in D$).

Therefore $\gamma(S(G)) \leq |D_1| = |D| + q = \gamma(G) + q \leq 2\gamma(G)$. ■

7.2.7. **Lemma:** Let D be a minimum dominating set of G with the maximum number of edges. Let $\{S_1, S_2, \ldots, S_r\}$ be the star decomposition of D. Let $V(S_i) = t_i$, $i = 1, 2, \ldots, r$. Then

$$\gamma(S(G)) \leq \gamma(G) + (n - t_1 - t_2 - \cdots - t_r).$$

Proof: For each star S_i with center x and claws $y_1, y_2, \ldots, y_{i-1}$, the corresponding points of $T_i' = \{x', y_1', y_2', \ldots, y_{i-1}'\}$ are dominated by x, y_1, y_2, \ldots, y_{i-1}. Therefore $D_1 = D \cup T$ where T is the set of points in V_{i}' not belonging to T_i' is a dominating set of $S(G)$.

Therefore $\gamma(S(G)) \leq |D_1| = |D| + |T| = \gamma(G) + (n - t_1 - t_2 - \cdots - t_r)$. ■
7.2.8. **Theorem:** Let G be a connected graph. Let γ_{td} denotes the cardinality of minimum total dominating set. Then $\gamma(S(G)) = \gamma_{td}$.

Proof: Let D be a total dominating set with minimum cardinality for G. Therefore D dominates $S(G)$. Therefore $\gamma(S(G)) \leq |D| = \gamma_{td}$.

Suppose T is a dominating set of $S(G)$ with $|T| < \gamma_{td}$. Without loss of generality, $T \subseteq V_1$. Therefore T is not a total dominating set of G. Hence T has an independent point. Therefore T cannot dominate $S(G)$, which is a contradiction. Therefore $\gamma(S(G)) = \gamma_{td}$.

7.2.9. **Corollary:** $\gamma_{td}(S(G)) = \gamma_{td}(G) = \gamma(S(G))$

Proof: Let D be a total dominating set of G with minimum cardinality. Therefore every point of $V(G)$ is adjacent to some point of D. Let $u' \in V'$. Then u is adjacent to some point x of D. Therefore u' is adjacent to x. Therefore D is a total dominating set of $S(G)$. Therefore

$\gamma_{td}(S(G)) \leq \gamma_{td}(G) = \gamma(S(G)) \leq \gamma_{td}(S(G))$.

Therefore $\gamma_{td}(S(G)) = \gamma_{td}(G) = \gamma(S(G))$.

7.2.10. Theorem: Let G be a connected graph then \(\gamma_i(S(G)) = 2\gamma_i(G) \)

Proof: Let D be a minimum independent dominating set of G. Then the points corresponding to the elements of D will not be dominated by points of D. Therefore \(D \cup D' \) where \(D' = \{ v : v \in D \} \) is an independent dominating set of \(S(G) \). Therefore \(\gamma_i(S(G)) \leq 2\gamma_i(G) \).

Suppose \(D_1 \) is a minimum independent dominating set of \(S(G) \). Let \(D_1 \cap V(G) = \{ u_1, u_2, ..., u_k \} \). Then \(\{ u_1, u_2, ..., u_k \} \) dominates \(N'(u_1), N'(u_2), ..., N'(u_k) \). \(D_1 \) contains \(u_1', u_2', ..., u_k' \). Let \(u \in V(G) \) and \(u \) not adjacent to \(u_1, u_2, ..., u_k \). Then \(u' \) is not adjacent to \(u_1, u_2, ..., u_k \). Therefore \(u' \) must belong to \(D_1 \). Therefore for every point \(u \) not adjacent to \(u_1, u_2, ..., u_k \), the corresponding points \(u' \in D_1 \) and \(u \notin \{ u_1', u_2', ..., u_k' \} \).

Let \(I \) be the cardinality of minimum independent set of \(V(G) - (\{ u_1, u_2, ..., u_k \} \cup N(u_1) \cup ... \cup N(u_k)) \), then these \(I \) points are not adjacent to \(\{ u_1', u_2', ..., u_k' \} \) and not adjacent to the
corresponding points of these 1 points we have to take the corresponding 1 points. Also we have to take atleast some other 1 points in V' to dominate these 1 independent points and other left out points of V'. For : Let this minimum independent dominating set be \(\{y_1, y_2, \ldots, y_1\} \). For each \(y_i \) there exists atleast one \(z_i \in V_i \) such that \(y_i \) dominates \(z_i \) and \(z_1, z_2, \ldots, z_i \) are distinct. For, if there exist less than 1 points to be dominated by \(y_1, y_2, \ldots, y_1 \) then some of the points \(y', y_2, \ldots, y' \) are isolated. Otherwise less than \((1 - 1) \) points will be adjacent to \(u_1, u_2, \ldots, u_i \) and hence the domination number will be less than 1. If there are isolated points in \(y_1, y_2, \ldots, y_i \) then they cannot be dominated by any point in \(D_1 \cap V' \). So those isolated points must belong to \(\{u_1, u_2, \ldots, u_k\} \), a contradiction. Now \(z'_1, z'_2, \ldots, z'_i \) have to be taken in \(D_1 \), since \(u_1, u_2, \ldots, u_k \) cannot dominate \(z'_1, z'_2, \ldots, z'_i \).

Therefore \(|D_1| \geq 2k + 2l = 2(k + l) \geq 2 \gamma_i(G) \).

That is, \(\gamma_i(S(G)) \geq 2 \gamma_i(G) \). Hence \(\gamma_i(S(G)) = 2 \gamma_i(G) \).

\[\square \]
We conclude with the following open problems.

1. Let Γ_1 be the set of all graphs on a set V and Γ_2 be the set of all topologies on V. Let $\phi : \Gamma_1 \rightarrow \Gamma_2$ and $\psi : \Gamma_2 \rightarrow \Gamma_1$. Determine the relation between $\gamma(G)$ and $\gamma(\psi \circ \phi(G))$.

2. Determine ϕ and ψ so that $\psi \circ \phi$ preserves certain specified parameters of G.