CHAPTER II
CHAPTER II

COMPLEMENTARY CONNECTED DOMINATION NUMBER

Introduction

Kulli and Janakiram have defined the parameter called “Non-split domination number” [16]. They obtained many bounds and some relations with other domination parameters. But we independently defined this concept as Complementary Connected Domination Number. Even though the two definitions viz., non-split domination number and complementary connected domination number are one and the same, the results obtained in this chapter are not found in [16]. More specially we obtain new bounds and relations with other domination related parameters. The contents have been published as a paper in the “International Journal of Management and Systems, Vol.18 No.2. p. 147-154 (2002)” (See Appendix).
§ 2.1 BASIC OBSERVATIONS

Definition 2.1.1 A subset S of V of a non-trivial graph G is said to be a complementary connected domination set, if S is a dominating set and $G[V-S]$ is connected. The minimum cardinality of such S is called complementary connected domination number and is denoted by $\gamma_{cc}(G)$.

Remark 2.1.2 The following results can be easily obtained from the definitions of the respective parameters.

(i) If $m \geq 1$, then $\gamma_{cc}(G)$ exists.

(ii) If $G = P_n$ ($n \geq 3$), then $\gamma_{cc}(G) = n - 2 = \gamma_c(G)$. Also for $G = P_2$, $\gamma_{cc}(G) = 1$.

(iii) If $G = C_n$, then $\gamma_{cc}(G) = n - 2 = \gamma_c(G)$.

(iv) If G is the corona $H \circ K_1$ for some connected graph H, then $\gamma_{cc}(G) = n / 2 = \gamma_c(G)$.

(v) If G is a star graph, then $\gamma_{cc}(G) = n - 1$.

(vi) For any graph G, $\gamma(G) \leq \gamma_{cc}(G)$.

(vii) If P_k ($k > 3$) is a subgraph of the graph G, then $\gamma_{cc}(G) \leq n - 2$.

Remark 2.1.3 Let $G_1, G_2, ..., G_m$ be the components of G.
Then \(\gamma_{cc}(G) = \min \left\{ \sum_{1 \leq i \leq m} |V(G_k)| + \gamma_{cc}(G_i) \right\} \).

Hereafter in this chapter, by a graph \(G \), we mean a simple connected graph with the number of vertices \(n > 1 \).

Theorem 2.1.4 Let \(G \) be a graph with \(n > 2 \). Then there exists a \(\gamma_{cc}(G) \)-set \(S \) which contains all the pendant vertices of \(G \).

Proof Let \(S \) be any \(\gamma_{cc}(G) \)-set. Let \(u \) be a pendant vertex not in \(S \). Then \(u \) is adjacent to a non–pendant vertex \(v \in S \). If \(|V - S| = 1 \), then \(\gamma_{cc}(G) = n - 1 \). Now \(S_1 = S \cup \{u\} - \{v\} \) is clearly a \(\gamma_{cc}(G) \)-set with all pendant vertices in \(G \). So let us assume that \(|V - S| > 1 \). Note that \(v \) is the only vertex adjacent to \(u \) and so \(u \) is isolated in \(G[V - S] \), it is a contradiction to \(S \) is a \(\gamma_{cc}(G) \)-set. Hence \(S \) contains all the pendant vertices of \(G \).

\(\square \)

Remark 2.1.5 It is clear that any \(\gamma_{cc}(G) \)-set \(S \) of \(G \) with \(|S| \leq n - 2 \) contains all pendant vertices of \(G \).

Lemma 2.1.6 Let \(v \) be a cut vertex of a graph \(G \) and \(S \) be a \(\gamma_{cc}(G) \)-set of \(G \). If \(v \in S \), then all vertices except one component of \(G - v \) belong to \(S \).
Proof Suppose there exist vertices \(u \) and \(w \) in two different components of \(G - v \) and not in \(S \). Since \(v \) is on every \(u - w \) path of \(G \) and \(v \in S \), the vertices \(u \) and \(w \) are not connected in \(G[V-S] \), a contradiction.

\[\square \]

Theorem 2.1.7 Let \(T \) be a tree. Then \(\gamma_{cc}(T) = n/2 \) if and only if \(T \) is of the form \(HoK_1 \) for some tree \(H \).

Proof If \(T = HoK_1 \), then \(T \) has even number of vertices and \(\gamma_{cc}(G) = n/2 \).

Conversely, suppose \(n = 2 \), then the result is trivial. Assume that \(G \) is a graph with \(\gamma_{cc}(G) = n/2 \) and \(n > 2 \). Let \(S \) be a \(\gamma_{cc}(G) \)-set containing all the pendant vertices (Theorem 2.1.4). Any vertex in \(S \) cannot dominate two or more vertices in \(V - S \). Otherwise \(T \) contains a cycle. Hence a vertex \(u \in S \) cannot have more than one neighbor in \(V - S \). Also each vertex in \(V - S \) has at least one neighbor in \(S \). If \(k \) (\(k > 0 \)) vertices in \(S \) have less than \(k \) neighbors in \(V - S \), then since \(\gamma_{cc}(G) = n/2 \), there exists \(p \) (\(p > 1 \)) vertices in \(V - S \) adjacent to less than \(p \) vertices in \(S \). This is impossible since \(V - S \) is connected. Therefore, each vertex in \(V - S \) is adjacent to only one vertex in \(S \). Since \(|S| = n/2 \), it is enough to prove that \(S \) contains only pendant vertices of \(T \).

Now supposing \(S \) contains a non-pendant vertex \(u \), then at least one vertex \(u_1 \neq u \) not adjacent to the vertices in \(V - S \), by Lemma 2.1.6. We
see that, for the two vertices u_1 and u, there will be exactly one neighbor in $V - S$, which is impossible by the above argument.

Remark 2.1.8 There do exist graphs G (figures given below) for which $\gamma_{cc}(G) = n / 2$. Further, we could not obtain a necessary and sufficient condition for $\gamma_{cc}(G) = n / 2$.

(i)

(ii)

(iii)

(iv)

(v)
Theorem 2.1.9 For a tree T, $\gamma_{cc}(T) \geq \text{diam} (T) - 1$.

Proof Let u and v be the two vertices in T such that $\text{dist}(u, v) = \text{diam}(T)$. Clearly u and v are pendant vertices. By Theorem 2.1.4, one can find a $\gamma_{cc}(G)$-set S, with v and v in S. Let u_1 be the first vertex, which is not in S from u and v_1 be the first vertex, which is not in S from v along the path
of the diameter. If \(u_1 \) and \(v_1 \) are adjacent, then \(\gamma_{cc}(T) \leq \text{diam}(T) - 1 \).

Suppose \(u_1 \) and \(v_1 \) are not adjacent, then by the definition of the \(\gamma_{cc}(G) \)-set, \(u_1 \) and \(v_1 \) are connected in \(V - S \). Hence each vertex in the \(u_1-v_1 \) path is adjacent to at least one vertex in \(S \). Therefore \(\gamma_{cc}(T) \leq \text{diam}(T) - 1 \). \(\square \)

Remark 2.1.10 If \(T = P_n \), then \(\gamma_{cc}(T) = \text{diam}(T) - 1 \).

Theorem 2.1.11 For any graph \(G \), \(\gamma_{cc}(G) \leq n - \delta \), where \(\delta \) is the minimum degree of the graph \(G \).

Proof If the minimum degree \(\delta = 1 \), the result is true. Let \(v \) be a vertex in \(V(G) \) such that \(\text{deg}(v) = \delta > 1 \). Then \(G \) must have a cycle and so \(\gamma_{cc}(G) \leq n - 2 \). If \(G[N(v)] \) is connected, then \(\gamma_{cc}(G) \leq |N(v)| = n - \delta \). On the other hand, let \(u_1, u_2, \ldots, u_k \) \((k < \delta - 1)\) be the vertices in \(N(v) \) and not adjacent to a vertex \(u \in N(v) \). Since each \(u_i \) is of degree at least \(\delta \), each \(u_i \) is adjacent to a vertex not in \(N[v] \). If we choose \(S_1 = V - N[v] \cup \{u\} \), then it dominates the vertices of \(G \). Since \(G[V-S_1] \) is connected, \(\gamma_{cc}(G) \leq |S_1| = n - \delta \). \(\square \)

Theorem 2.1.12 Let \(G \) be a graph. Then \(\gamma_{cc}(G) = n - 1 \) if and only if \(G \) is a star.
Proof If G is a star, then $\gamma_{cc}(G) = n - 1$. Conversely, assume that $\gamma_{cc}(G) = n - 1$. Suppose G contains a cycle, then $\gamma_{cc}(G) \leq n - 2$. Therefore G must be a tree. If $n = 2$, then the result is obvious. If G is not a star and $n \geq 3$, then $\text{diam}(G) \geq 3$. In this case P_4 is a sub graph of G and hence $\gamma_{cc}(G) \leq n - 2$, a contradiction to $\gamma_{cc}(G) = n - 1$. \qed

Remark 2.1.13 In view of the above Theorem 2.1.12, if G is not a star, then $\gamma_{cc}(G) \leq n - 2$ ($n \geq 3$). However the following are a few graphs for which $\gamma_{cc}(G) = n - 2$.

(i)

(ii) P_n (iii) C_n (iv) $K_2 \circ nK_1$

Figure 2.2
§ 2.2.0 RELATIONS WITH OTHER PARAMETERS

In this section, we obtain results connecting Complementary Connected Domination Number and other domination parameters.

Theorem 2.2.1 Let S be any $\gamma_{cc}(G)$–set of the graph G. If $\gamma(G) = \gamma_{cc}(G)$, then S cannot have cut vertices.

Proof Suppose $|S| = n - 1$. Then G must be a star. Since $\gamma(G) = 1$ for a star, $n = 2$. That is $G = K_2$ and hence the theorem is obvious. Assume that $|S| \leq n - 2$. Then S contains all the pendant vertices (Remark 2.1.5).

Now it is enough to prove that, if S is a $\gamma_{cc}(G)$–set having a cut vertex v, then $\gamma(G) \neq \gamma_{cc}(G)$. Since $v \in S$, one of the components of G – {v} must be in S (Lemma 2.1.6). Clearly v is of degree greater than one.

Case 1: Suppose G – {v} has isolated vertices, then all these isolated vertices would be in S. The vertex v is enough to dominate the isolated vertices and hence $\gamma(G) < \gamma_{cc}(G)$.

Case 2: Suppose G – {v} has no isolated vertices. Note that each vertex in one of the components of G – {v} is in S. Now, for selection of the γ–set, one need to take all vertices of the connected component of G – {v} and so $\gamma(G) < \gamma_{cc}(G)$.
Remark 2.2.2 Any γ_{cc}-set of C_5 does not have cut vertices. However $\gamma_{cc}(C_5) = 3$, $\gamma(C_5) = 2$. Hence the converse of the theorem is not true.

Proposition 2.2.3 If G is a tree, then $\gamma_{cc} \geq \beta_o$.

Proof Let S be a γ_{cc}-set containing all the pendant vertices of G (Theorem 2.1.4). Suppose S has no non-pendant vertices, then S is independent and so $\gamma_{cc} = \beta_o$. Here we see that $G = G[N[V - S]]$. On the other hand, assume that S contains a non-pendant vertex u, that is $G \neq G[N[V - S]]$. Note that all the vertices in $G - N[V - S]$ must be in S where as all these need not be in a β_o-set of G. Suppose $\beta_o > \gamma_{cc}$, then β_o of $N[V - S]$ must be greater than γ_{cc} of $G[N[V - S]]$ which is impossible. Thus $\gamma_{cc} \geq \beta_o$.

Corollary 2.2.4 For any tree T, $\gamma_{cc}(T) \geq n / 2$.

Proof Since T is a tree, $\beta_o(T) \geq n / 2$ [20], by the Proposition 2.2.3, $\gamma_{cc}(T) \geq n / 2$.
Corollary 2.2.5 For any tree T, $\gamma_{cc}(T) = \gamma(T)$ if and only if $T = HoK_1$ for some tree H.

Proof We have $\gamma(T) \leq n / 2$ (Theorem 1.24 [20]) and $\gamma_{cc}(T) \geq n / 2$ (Corollary 2.2.4). Therefore $\gamma_{cc}(T) = \gamma(T)$ if and only if $\gamma(T) = \gamma_{cc}(T) = n / 2$. That is if and only if $T = HoK_1$ (Theorem 1.29, [10] and Theorem 2.1.7).

Proposition 2.2.6 Let G be a graph. If $\gamma_{cc}(G)$–set S is independent, then $V - S$ is a dominating set and $\gamma + \gamma_{cc} \leq n$.

Proof Since S is independent, every vertex in S is adjacent to at least one vertex and so $V - S$ and so $V - S$ is a dominating set. Hence $\gamma \leq |V - S|$. This gives that $n = |S| + |V - S| \geq \gamma_{cc} + \gamma$.

Theorem 2.2.7 Let T be a tree with $n \geq 3$ and S be a $\gamma_{cc}(T)$–set. Then $V - S$ is a dominating set if and only if every vertex $v \in T$ of degree greater than one is a support.

Proof Assume that every vertex $v \in T$ with $\deg(v) \geq 2$ is a support. The set of all pendant vertices will form a γ_{cc}–set and therefore $V - S$ is a dominating set.
Conversely, assume that $V - S$ is a dominating set. If $|S| = n - 1$, then T is a star and so nothing to prove. Otherwise $|S| < n - 1$, then S contains all the pendant vertices (Remark 2.1.5). If S contains only pendant vertices, then each vertex of degree greater than one is a support. On the other hand S contains a non-pendant vertex. Let v be a vertex, which is not a support.

Case 1: If $v \in S$, then there exists a pendant vertex $w \in S$ such that entire $v - w$ path is in S. Note that w is not covered by $V - S$, a contradiction to $V - S$ is a dominating set.

Case 2: If $v \not\in S$, then there exists a $x \in S$ such that v is dominated by x in S. By the assumption x is not a pendant vertex. Hence there exists a pendant vertex w in S such that $x - w$ path is fully in S. Also w is not covered by $V - S$, a contradiction to the assumption.

Proposition 2.2.8 Let S be a γ_{cc}-set of a graph G such that $V - S$ is a dominating set. Then S has no cut vertices.

Proof Suppose S has a cut vertex say x, then by Lemma 2.1.6, all the vertices of one of the components of $G - \{x\}$ are in S. Hence $V - S$ cannot dominate all the vertices of S.

\[\]
Remark 2.2.9 The converse of the Theorem 2.2.8 need not be true. For example, C_5 has no cut vertices. We see that any $\gamma_{cc}(G)$-set S of C_5 contains 3 adjacent vertices. Note that S contains no cut vertices where as $V - S$ is not a dominating set.

Proposition 2.2.10 If cut T is the number of cut vertices of a tree T ($n > 2$), then $\gamma_{cc}(T) \geq \text{cut } T$.

Proof Let S be a $\gamma_{cc}(G)$-set containing all the pendant vertices of T (Theorem 2.1.4). The vertices of $V - S$ are cut vertices of T. Let v be a vertex in $V - S$. By Lemma 2.1.6, corresponding to every vertex v in $V - S$, there must be at least one pendant vertex in S. Hence $\gamma_{cc}(T) \geq \text{cut } T$. □

Corollary 2.2.11 For any tree T, if $\text{cut } T = \gamma_{cc}(T)$, then $\gamma_{cc}(T) = \gamma_e(T)$.

Proof It is known that the set of all non-pendant vertices form a γ_e-set. Hence $\gamma_e(T) = \text{cut } T = \gamma_{cc}(T)$. □

Corollary 2.2.12 For any tree T, $\gamma_{cc}(T) \geq \gamma_e(T)$.

Proof The corollary is immediate from $\gamma_e(T) = \text{cut } T$ (Corollary 1.40, [19]). □
Proposition 2.2.13 Let T be a tree: If $\gamma_{cc}(T) = l(T)$, then $\beta_o(T) = \gamma_{cc}(T)$, where $l(T)$ is the number of leaves in the tree T.

Proof One can observe that there exists a β_o-set containing all the pendant vertices of the tree T (Theorem 5.1.4). Since all the pendant vertices dominate T, $\beta_o(T) = l(T)$. Hence $\beta_o(T) = \gamma_{cc}(T)$.

Corollary 2.2.14 If $\gamma_{cc}(T) = l(T)$, then $\gamma(T) + \gamma_{cc}(T) = n$ and $\gamma(T) + \beta_o(T) = n$.

Proof If $\gamma_{cc}(T) = l(T)$, then T contains $n - l(T)$ supports. Since there is a γ-set (Theorem 5.3.1) containing all its supports, $\gamma(T) = n - l(T)$. That is $\gamma(T) + \gamma_{cc}(T) = n$. The other part of the Corollary follows from the Proposition 2.2.13.

Theorem 2.2.15 Let T be a tree and s_t be the number of supports in T. Then $\gamma_{cc} \geq n - s_t$.

Proof If $\gamma_{cc} = n - 1$, then T is a star and hence in this case $s_t = 1$. Thus $\gamma_{cc} = n - s_t$. Now assume that $\gamma_{cc} \leq n - 2$. Let S be a γ_{cc}-set of T. Clearly S contains all the pendant vertices (Remark 2.1.5). If every u in $V - S$ is adjacent to at least one pendant vertex, then every vertex of $V - S$ is a
support. Otherwise there exists a \(u \in V - S \), which is not a support. By the
Lemma 2.1.6, all vertices of one of the components of \(G - \{ u \} \) are in \(S \).
Hence \(u \) corresponds to a support in \(S \). This implies that in either case
every vertex in \(V - S \) corresponds to a support and this correspondence is
also one-to-one. Thus, in this case also, \(s_t \geq |V - S| \). From this the result
follows.

\[S_t \leq |V - S| \]

From this the result follows.

Corollary 2.2.16 For a tree \(T \), if \(\text{diam}(T) \leq 3 \), then \(\gamma_{cc} + s_t = n \).

Proof If \(\text{diam}(T) \leq 3 \), then by the assumption, \(P_5 \) is not a sub graph of \(T \)
and so every vertex of degree greater than or equal to 2 is adjacent to at
least one pendant vertex. Hence every \(\gamma_{cc} \)-set \(S \) of \(T \) contains only
pendant vertices of \(T \) which gives that \(\gamma_{cc} + s_t = n \).

Corollary 2.2.17 If \(\gamma_{cc}(T) + l(T) = n \), then \(\gamma_{cc}(T) = \gamma_e(T) \), where \(l(T) \) is
the number of leaves of a tree \(T \).

Proof The result is the consequence of the fact that \(\gamma_e(T) = n - l(T) \),
where \(l(T) \) is the number of leaves of the tree \(T \) (Corollary 1.40, [19]).
Theorem 2.2.18 Let v be the vertex of the graph G with deg(v) = k. If every $u \in N(v)$ is adjacent to at least one vertex not in $N[v]$, then $\gamma_{cc} \leq n - k$.

Proof Let $v \in V(G)$ and deg(v) = k. Since every vertex in $N[v]$ is adjacent to at least one vertex not in $N[v]$, it is easy to see that $S = V(G) - N[v] \cup \{u\}$, for $u \in N(v)$, is a dominating set of G. Now $|S| = |V(G) - N[v] \cup \{u\}| = n - (k + 1) + 1 = n - k$. Also note that $G[V - S]$ is connected. Hence $\gamma_{cc}(G) \leq |S| = n - k$.

Corollary 2.2.19 Let v be a vertex of the graph G with maximum degree Δ. If $u \in N(v)$ has at least one adjacent vertex not in $N[v]$, then $\gamma_{cc} \leq n - \Delta$.

Theorem 2.2.20 For any connected graph G with n vertices and m edges, $\left\lceil \frac{n}{\Delta+1} \right\rceil \leq \gamma_{cc} \leq 2m - n + 1$. Also $\gamma_{cc} = 2m - n + 1$ if and only if G is a star.
Proof Since \(\lceil n / (A + 1) \rceil \leq \gamma \) (Theorem 1.26, [21]) and \(\gamma \leq \gamma_{cc} \), the lower bound of the equality is true. For the upper bound, it is known that \(\gamma_{cc} \leq n - 1 \). That is \(\gamma_{cc} \leq 2(n - 1) - n + 1 \). Since \(G \) is connected, \(m \geq n - 1 \) and so \(\gamma_{cc} \leq 2m - n + 1 \).

Suppose \(\gamma_{cc} = 2m - n + 1 \), then \(2m - n + 1 \leq n - 1 \). i.e., \(2m \leq 2n - 2 \) which implies that \(m \leq n - 1 \). This means that \(G \) must be a tree with \(m = n - 1 \) and \(\gamma_{cc} = n - 1 \). Clearly \(G \) is a star. The other part is trivial. \(\Box \)

Theorem 2.2.21 If \(\overline{G} \) is a connected complement of a connected bipartite graph \(G \), then \(\gamma_{cc}(\overline{G}) = \gamma(\overline{G}) = 2 \).

Proof Let \(G \) be a connected bipartite graph. Then \(G \) cannot be a complete bipartite graph. Otherwise \(\overline{G} \) is disconnected. Let \((X, Y) \) be a partition of \(V(G) \). Note that \(G[X] \) and \(G[Y] \) are complete in \(\overline{G} \). Since \(G \) is not complete bipartite, there exists a vertex \(v \) in \(X \) not adjacent to a vertex \(u \in Y \). Clearly \(u \) and \(v \) are adjacent in \(\overline{G} \). Choose \(u_1 \in N(u) \) and \(v_1 \in N(v) \). Let \(S = \{u_1, v_1\} \). Then \(S \) is a \(\gamma_{cc} \)-set in \(\overline{G} \). Since \(\gamma(\overline{G}) \) cannot be 1, we observe that \(\gamma_{cc}(\overline{G}) = \gamma(\overline{G}) = 2 \). \(\Box \)
Let G be a connected graph. If H is a connected spanning subgraph of G, then one can see that $\gamma_{cc}(G) \leq \gamma_{cc}(H)$. Let $e_t = \min \{k / k$ is the number of pendant edges in a connected spanning tree of G}, where the minimum runs over all connected spanning trees of G.

Theorem 2.2.22 If G is a connected graph with $n > 2$, then $\gamma_{cc} \geq e_t$.

Proof Let S be a γ_{cc}-set. Since G[V – S] is connected, G[V – S] has a spanning tree T (say). Consider the spanning tree of G formed by adding the vertices of S to T such that each vertex in S is adjacent to only one vertex in T. Thus T has at least γ_{cc} pendant edges. Hence $\gamma_{cc} \geq e_t$. \qed