TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>iv</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
</tbody>
</table>

Chapter

1. **INTRODUCTION TO SHOP SCHEDULING**

 1.1 Introduction
 1.2 Scheduling
 1.3 Scheduling Function
 1.4 Scheduling Theory
 1.5 Concept of Single Machine Scheduling
 1.6 Concept of Flow Shop Scheduling
 1.7 Open Shop Scheduling Problem
 1.8 Job Shop Scheduling Problem

2. **OPTIMAL SOLUTIONS TO SHOP SCHEDULING PROBLEMS**

 2.1 Introduction
 2.2 Latin Rectangles
 2.3 Optimal Solution of OSSPs
 2.4 Latin Rectangles and Sequence Graphs
 2.5 Sequence
 2.3 Solution for JSSPs
3. LOCAL SEARCH ALGORITHMS

3.1 Introduction 36
3.2 Local Search 36
3.3 Threshold Algorithms 39
3.4 Taboo Search 39
3.5 Variable-Depth Search 40
3.6 Genetic Algorithms 40
3.7 Neural Networks Model 40
3.8 Solution Representation and Neighborhood Functions 41
3.8.1 The Neighborhood Function N_{h1} 43
3.8.2 The Neighborhood Function N_{h2} 43
3.8.3 The Neighborhood Function N_{h3} 44
3.8.4 The Neighborhood Function N_{h4} 44
3.8.5 The Neighborhood Function N_{h5} 45

4. CONSTRUCTION OF SPECIAL MACHINE ORDER MATRICES AND THEIR ASSOCIATES

4.1 Introduction 46
4.2 Cyclic Machine Orders 46
4.3 Machine Order Matrix 47
4.4 Cyclic Assignment of Machines 48
4.5 Cyclic Associates of a MOM 49
4.6 Special Machine Order Matrices 51
4.7 Algorithm to Construct Special Machine Order Matrices 51
4.8 Illustration 52

5. GENERATION OF ALTERNATIVE OPTIMAL SOLUTIONS TO OPEN SHOP SCHEDULING PROBLEMS

5.1 Introduction 54
5.2 Alternative Optimal Solution 54
5.3 The Three-Phase Method to Generate Alternative Optimal Solutions
5.4 Time Complexity
5.5 Illustration
5.6 Taillard’s Benchmark Problems
5.7 LiSA Software
5.8 Computational Results
5.9 Inferences

6. IDENTIFICATION OF RANK MINIMAL OPTIMAL SCHEDULES TO OPEN SHOP SCHEDULING PROBLEMS

6.1 Introduction
6.2 Rank Minimal Optimal Sequence
6.3 An Algorithm to Identify RMOSs for OSSPs
6.5 Time Complexity
6.6 Illustration
6.8 Experimental Results
6.8 Inferences

7. CONCLUSION

7.1 Summary of the Thesis
7.2 Major Contributions of the Thesis
7.3 Directions for Future Studies
Appendix – A

The Branch-and-Bound Algorithm for the Open-Shop Problem 92

Appendix – B

The Branch-and-Bound Algorithm for the Job-Shop Problem 98

Appendix – C

Base Machine Order Matrices and Distribution of all the optimal solutions and RMOSs to the benchmark problems, identified by the proposed algorithms 99

List of Publications 123

References 125