5.1 Introduction

This chapter deals with multi-fuzzification of algebraic structures like groups and normal subgroups. Theorems and concepts in multi-fuzzy subgroups are more or less similar to the respective concepts in fuzzy subgroups, but properties of extensions of group homomorphism (or a function) depends on the bridge function. In this chapter we consider order homomorphism as bridge function for the multi-fuzzy extensions of crisp functions. Note that, Order homomorphisms, lattice homomorphisms, arbitrary join preserving maps, complement preserving maps, etc. are some of the useful bridge functions for multi-fuzzy extensions.

\[^{5}\text{Some results of this chapter have appeared in the paper Multi-Fuzzy subgroups, Int. J. Contemp. Math. Sciences, Vol. 6, No. 8 (2011) 365-372.}\]
5.2 Multi-fuzzy Subgroups

We introduce the concepts of multi-fuzzy subgroup and multi-fuzzy subgroupoid. Partial order \geq is the opposite order relation of the partial order \leq.

Definition 5.2.1. A multi-fuzzy set A of a group G is called a multi-fuzzy subgroup of G if

1. $A(x) \land A(y) \leq A(xy)$, and

2. $A(x^{-1}) = A(x)$, for all $x, y \in G$.

Equivalently, a multi-fuzzy set A is called a multi-fuzzy subgroup of G, if

$$A(x) \land A(y) \leq A(xy^{-1}), \forall x, y \in G.$$

It follows immediately from this definition that $A(x) \leq A(e)$, for all $x \in G$, where e is the identity element of G. If A is a multi-fuzzy subgroup of a group G, then

$$A(xy^{-1}) = A(e) \text{ implies } A(x) = A(y), \forall x, y \in G.$$

A multi-fuzzy subset A of a group G is called a multi-fuzzy subgroupoid of G, if

$$A(x) \land A(y) \leq A(xy), \forall x, y \in G.$$

Theorem 5.2.2. If $\{A_i : i \in I\}$ is a family of multi-fuzzy subgroups of a group G, then $\bigcap A_i$ is a multi-fuzzy subgroup of G.

Proof. Let $A = \bigcap A_i$. For every $x, y \in G$;

$$A(xy^{-1}) = (\bigcap A_i)(xy^{-1}) = \bigwedge A_i(xy^{-1}) \geq \bigwedge(A_i(x) \land A_i(y))$$

$$= (\bigwedge A_i(x)) \land (\bigwedge A_i(y)) = (\bigcap A_i)(x) \land (\bigcap A_i)(y)$$

$$= A(x) \land A(y).$$
Remark 5.2.3. Union of two multi-fuzzy subgroups of a group \(G \) need not be a multi-fuzzy subgroup of \(G \).

Theorem 5.2.4. Let \(G_1 \) and \(G_2 \) be groups, \(f \) be a group homomorphism from \(G_1 \) into \(G_2 \) and a finite meet preserving order homomorphism \(h : \prod M_i \to \prod L_j \) be the bridge function for the multi-fuzzy extension of \(f \). If \(A \) be a multi-fuzzy subgroup of \(G_1 \), then \(f(A) \) is a multi-fuzzy subgroup of \(G_2 \).

Proof. Let \(x, y \in G_2 \). If either \(f^{-1}(x) \) or \(f^{-1}(y) \) is empty, then

\[
f(A)(x) \land f(A)(y) = 0
\]

and implies

\[
f(A)(xy^{-1}) \geq f(A)(x) \land f(A)(y).
\]

Assume that neither \(f^{-1}(x) \) nor \(f^{-1}(y) \) is empty. Therefore, there exist \(u \in f^{-1}(x) \) and \(v \in f^{-1}(y) \) such that

\[
A(u) = \bigvee \{A(t) : t \in G_1, \ x = f(t)\}
\]

and

\[
A(v) = \bigvee \{A(t) : t \in G_1, \ y = f(t)\}.
\]

We have

\[
xy^{-1} = f(u)(f(v))^{-1} = f(uv^{-1})
\]

and so

\[
uv^{-1} \in f^{-1}(xy^{-1}).
\]
Thus
\[
f(A)(xy^{-1}) = \bigvee \{ h(A(z)) : z \in G_1, xy^{-1} = f(z) \}
\geq h(A(uv^{-1})) \geq h(A(u) \land A(v)) = h(A(u)) \land h(A(v))
= h(\bigvee \{ A(t) : x = f(t) \}) \land h(\bigvee \{ A(t) : y = f(t) \})
= (\bigvee \{ h(A(t)) : x = f(t) \}) \land (\bigvee \{ h(A(t)) : y = f(t) \})
= f(A)(x) \land f(A)(y).
\]

Hence \(f(A) \) is a subgroup of \(G_2 \).

Theorem 5.2.5. Let \(G_1 \) and \(G_2 \) be groups, \(f : G_1 \to G_2 \) be a group homomorphism and an order homomorphism \(h : \prod M_i \to \prod L_j \) be the bridge function for the multi-fuzzy extension of \(f \). If \(B \) be a multi-fuzzy subgroup of \(G_2 \), then \(f^{-1}(B) \) is a multi-fuzzy subgroup of \(G_1 \).

Proof. Note that \(h^{-1} : \prod L_j \to \prod M_i \) is order preserving and meet preserving (see Note 1.2.14), and \(f^{-1}(B)(y) = h^{-1} \circ B(f(y)) \). For every \(x, y \in G \);

\[
f^{-1}(B)(xy^{-1}) = h^{-1} \circ B(f(x)y^{-1})
= h^{-1} \circ B(f(x)(f(y))^{-1})
\geq h^{-1}(B(f(x)) \land B(f(y)))
= h^{-1}(B(f(x))) \land h^{-1}(B(f(y)))
= (f^{-1}(B)(x)) \land (f^{-1}(B)(y)).
\]

Theorem 5.2.6. Let \(f \) be an injective group homomorphism from group \(G_1 \) into group \(G_2 \), an injective meet preserving order homomorphism \(h : \prod M_i \to \prod L_j \) be
5.3 Normal Multi-fuzzy Subgroups

Throughout this chapter we will use order homomorphisms as bridge functions for multi-fuzzy extensions of crisp functions unless otherwise stated.

Definition 5.3.1. A multi-fuzzy subgroup \(A \) of a group \(G \) is called normal, if for each \(x \in G \),

\[
A(x) \leq \bigwedge_{g \in G} A(gxg^{-1})
\]

Theorem 5.3.2. Let \(A \) be a multi-fuzzy subgroup of a group \(G \). Then the following conditions are equivalent for each \(x, g \in G \):

1. \(A \) is a normal multi-fuzzy subgroup of \(G \);
2. \(A(x) \leq A(gxg^{-1}) \);
3. \(A(x) = A(gxg^{-1}) \);
4. \(A(xg) = A(gx) \).

Proof. \(\square \) A(x) \leq \bigwedge_{g \in G} A(gxg^{-1}) \) if and only if \(A(x) \leq A(gxg^{-1}), \forall g \in G \).
5.3. NORMAL MULTI-FUZZY SUBGROUPS

\[\Rightarrow \quad (2) \quad A(x) \leq A(g x g^{-1}) \leq A(g^{-1}(gxg^{-1})g) = A(x). \]

\[\Rightarrow \quad (3) \quad \text{is trivial.} \]

\[\Rightarrow \quad (3) \quad A(xg) = A(g(xg)g^{-1}) = A((gx)(gg^{-1})) = A(gx). \]

\[\Rightarrow \quad (4) \quad A(g g^{-1}) = A((gx) g^{-1}) = A(g^{-1}(gx)) = A((g^{-1} g)x) = A(x). \]

Theorem 5.3.3. If \(A_1 \) and \(A_2 \) are two normal multi-fuzzy subgroups of a group \(G \), then their intersection \(A_1 \cap A_2 \) is a normal multi-fuzzy subgroup of \(G \).

Proof. By Theorem 5.2.2, \(A_1 \cap A_2 \) is a multi-fuzzy subgroup of \(G \). For every \(x, g \in g \),

\[(A_1 \cap A_2)(gxg^{-1}) = A_1(gxg^{-1}) \land A_2(gxg^{-1}) = A_1(x) \land A_2(x) = (A_1 \cap A_2)(x). \]

Hence \(A_1 \cap A_2 \) is a normal multi-fuzzy subgroup of \(G \).

Theorem 5.3.4. \(A \) is a normal multi-fuzzy subgroup of a group \(G \) if and only if each level subgroup \(A_{[\alpha]} \) is normal in \(G \), for \(\alpha \in \prod M_i \).

Proof. First we prove that, \(A \) is a multi-fuzzy subgroup of \(G \) if and only if each level subset \(A_{[\alpha]} \) is a subgroup of \(G \). Assume that \(A \) is a multi-fuzzy subgroup of \(G \). Let \(\alpha \in \prod M_i \) be arbitrary (fixed), for every \(x, y \in A_{[\alpha]} \) that is,

\[\alpha \leq A(x) \text{ and } \alpha \leq A(y) \]

and hence

\[\alpha \leq A(x) \land A(y) \leq A(xy^{-1}). \]

Therefore, \(xy^{-1} \in A_{[\alpha]} \) and implies \(A_{[\alpha]} \) is a subgroup of \(G \).

Conversely assume that \(A_{[\alpha]} \) is a subgroup of \(G \), for each \(\alpha \in \prod M_i \). Hence \(x, y \in A_{[\alpha]} \).
5.3. NORMAL MULTI-FUZZY SUBGROUPS

\(A_{[\alpha]} \) implies \(xy^{-1} \in A_{[\alpha]} \). That is,

\[\alpha \leq A(x) \leq A(xy^{-1}) \]

and

\[\alpha \leq A(y) \leq A(xy^{-1}). \]

Therefore,

\[\alpha \leq A(x) \land A(y) \leq A(xy^{-1}) \]

and hence \(A \) is a multi-fuzzy sub group of \(G \).

Finally, an arbitrary \(\alpha \in \prod M_i \), \(A_{[\alpha]} \) is a normal subgroup of \(G \) if and only if \(x \in A_{[\alpha]} \) implies

\[gxg^{-1} \in A_{[\alpha]}, \forall g \in G \]

if and only if for every \(x \in X \),

\[A(x) \leq \bigwedge_{g \in G} A(gxg^{-1}) \]

if and only if \(A \) is a normal multi-fuzzy subgroup of \(G \).

\[\square \]

Theorem 5.3.5. Let \(G_1 \) and \(G_2 \) be groups, \(f \) be a group homomorphism from \(G_1 \) onto \(G_2 \) and a meet preserving order homomorphism \(h : \prod M_i \rightarrow \prod L_j \) be the bridge function for the multi-fuzzy extension of \(f \).

(1) If \(A \) is a normal multi-fuzzy subgroup of \(G_1 \), then \(f(A) \) is a normal multi-fuzzy subgroup;

(2) If \(B \) is a normal multi-fuzzy subgroup of \(G_2 \), then \(f^{-1}(B) \) is a normal multi-fuzzy subgroup.
Proof. (1) For every $x_0 \in G_1$, we have
\[h(A(x_0)) \leq h(\bigwedge_{g \in G_1} A(gx_0g^{-1})) \leq \bigwedge_{g \in G_1} h(A(gx_0g^{-1})), \]
since
\[A(x_0) \leq \bigwedge_{g \in G_1} A(gx_0g^{-1}). \]
Let $y = f(x_0)$, then
\[\bigvee_{x \in f^{-1}(y)} h(A(x)) \leq \bigvee_{x \in f^{-1}(y)} \bigwedge_{g \in G_1} h(A(gxg^{-1})) \leq \bigwedge_{g \in G_1} \bigvee_{x \in f^{-1}(y)} h(A(gxg^{-1})). \]
That is,
\[f(y) \leq \bigwedge_{g \in G_1} f(A)(f(g)yf(g)^{-1}). \]
Hence $f(A)$ is a normal multi-fuzzy subgroup of G_2.

(2) For every $x \in G_1$,
\[f^{-1}(B)(x) = h^{-1}(B(f(x))) \leq h^{-1}(\bigwedge_{u \in G_2} B(uf(x)u^{-1})). \]
Since f is surjective, there exists a $g \in G_1$ for each $u \in G_2$, such that $u = f(g)$. Hence
\[f^{-1}(B)(x) \leq h^{-1}(\bigwedge_{g \in G_1} B(f(g)f(x)(f(g))^{-1})) \]
\[\leq \bigwedge_{g \in G_1} h^{-1}(B(f(g)f(x)(f(g))^{-1})) \]
\[= \bigwedge_{g \in G_1} h^{-1}(B(f(gxg^{-1}))) = \bigwedge_{g \in G_1} f^{-1}(B)(gxg^{-1}). \]
Hence $f^{-1}(B)$ is a normal multi-fuzzy subgroup of G_1. \(\square\)