1 INTRODUCTION

1.1 General

1.2 Plastics, Polymers and Polymerization

1.2.1 Polymers: A Brief History

1.2.2 Classification of Polymers

1.2.2.1 Natural and synthetic polymers

1.2.2.2 Thermoplastic and thermosetting polymers

1.2.2.3 Plastics, elastomers, fibres and resins

1.2.2.4 Organic and inorganic polymers

1.2.2.5 Homochain and hetrochain polymers

1.2.2.6 Homopolymers and copolymers

1.2.3 Types of Polymerization

1.2.3.1 Chain polymerization

1.2.3.1.1 Free radical polymerization

1.2.3.1.2 Ionic polymerization

1.2.3.1.3 Coordination polymerization

1.2.3.2 Step polymerization

1.3 Disposal Problems of Plastics

1.4 Polyethylene Terephthalate (PET)

1.5 Recycling

1.5.1 Significance of PET Recycling
1.5.2 Types of Recycling

1.5.2.1 Primary recycling

1.5.2.2 Secondary recycling

1.5.2.3 Tertiary recycling

1.4.2.4 Quaternary recycling

1.6 Scope and Objectives of Present Study

1.6.1 Scope

1.6.2 Objectives

1.7 Organization of Thesis

2 LITERATURE REVIEW

2.1 Introduction

2.2 Depolymerization–Glycolysis of PET

2.3 Polymer Concrete Using Unsaturated Polyester Resin Based on Recycled PET

2.4 Polymer Concrete Using Non-Recycled Resin

3 PRODUCTION OF POLYMER RESIN

3.1 Introduction

3.2 Details of Different Glycolysis Experiments

3.3 Glycolysis for Set 0

3.3.1 Glycolysis Experiment

3.3.2 Synthesis of Unsaturated Polyester Resin

3.3.3 Preparation of Polymer Mortar Specimen

3.3.4 Casting of Polymer Mortar Test Specimen

3.3.5 Chemical Composition

3.3.6 Characterization of Polymer Mortar

3.4 Results and Discussions

3.4.1 Depolymerization of Resin

3.4.2 Characterization of Resin

3.4.3 Structural and Physio-Chemical Properties of Polymer Mortar
4 GLYCOLYSIS FOR OTHER SETS AND PREPARATION OF POLYMER MORTAR AND CONCRETE SPECIMENS

4.1 Introduction

4.2 Production of Polymer Resin

4.3 Preparation of Polymer Mortar and Concrete

4.4 Testing of Polymer Mortar and Concrete

4.5 Characterization of Resin and Polymer Mortar

4.6 Results and Discussions
 4.6.1 Mechanical Properties of Polymer Mortar
 4.6.1.1 Compressive strength
 4.6.1.2 Stress strain curves
 4.6.2 Mechanical Properties of Polymer Concrete
 4.6.2.1 Compressive strength
 4.6.2.2 Stress strain curves
 4.6.2.3 Modulus of elasticity
 4.6.2.4 Poisson’s ratio
 4.6.3 Physio-Chemical Properties of Hardened Polymer Resin and Polymer Mortar
 4.6.3.1 Scanning electron microscopy (SEM)
 4.6.3.2 X-ray diffraction pattern
 4.6.3.3 Thermo gravimetric analysis-differential thermal Analysis (TGA-DTA)
 A) Hardened polymer mortar
 B) Hardened polymer resin

4.7 Concluding Remarks

5 FLEXURAL SHEAR AND BOND STRENGTH OF POLYMER CONCRETE

5.1 Introduction
6 DESIGN METHODOLOGY FOR POLYMER CONCRETE BEAMS AND PLATES

6.1 Introduction 191

6.2 Behaviour of Material 192
 6.2.1 Post Cracking Behaviour in Compression 192
 6.2.2 Modeling of PC in Compression 193
 6.2.3 Modeling of PC in Flexural Tension 195

6.3 Analysis for Flexure 197
 6.3.1 Assumptions 197
 6.3.2 Plain Polymer Concrete 198
 6.3.2.1 Case I Elastic State in Both Compression and Tension 198
 6.3.2.2 Case II Elastic State in Compression and
7 FAILURE CRITERIA OF POLYMER CONCRETE UNDER MULTI-AXIAL STRESSES

7.1 Introduction 252
7.2 Experimental Programme 253
7.3 Stress and Strain Invariants 255
 7.3.1 Stress Invariants 256
 7.3.2 Deviatoric Stress Invariants 258
 7.3.3 Evaluation of Principal Stresses 260
 7.3.4 Physical Interpretation of Stress Invariants 261
7.4 Material Models 262
7.4.1 Mohr-Coulomb Criterion 262
7.4.2 Drucker-Prager Criterion 268
7.5 Evaluation of Model Parameters for PC 269
 7.5.1 Mohr-Coulomb Failure Surface 274
 7.5.2 Drucker-Prager Failure Surface 279
7.6 Concluding Remarks 281

8 CONCLUSIONS 282 – 295

8.1 Introduction 282
8.2 Production of Polymer Resin and Its Curing 283
8.3 Production of Polymer Mortar and Concrete 283
8.4 Mechanical Properties of Polymer Mortar 284
 8.4.1 Compressive Strength 284
 8.4.2 Stress-Strain Behaviour 285
8.5 Mechanical Properties of Polymer Concrete 286
 8.5.1 Compressive Strength 286
 8.5.2 Stress-Strain Curve 287
 8.5.3 Modulus of Elasticity 288
8.6 Flexural Strength of PC 289
8.7 Bond Strength 290
8.8 Load Deflection Behaviour of Reinforced PC Beams 291
8.9 Shear Strength of PC 292
8.10 Design Methodology for Beams and Plates 292
8.11 Failure Criteria of PC 293
8.12 Recommendations for Further Research 294

REFERENCES 295 – 302

xiv