List of Figures

<table>
<thead>
<tr>
<th>Fig. No.</th>
<th>Title of Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pictorial view of the frequently used contacts</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Few representative switchgear devices</td>
<td>7</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of different materials used in make and break contacts</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic flow sheet for production of Ag-SnO$_2$ by PM route</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Flow-chart of Internal Oxidation route for production of silver-tin oxide contacts</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic representation of diffusion during internal oxidation of an Ag-Cd alloy</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Cadmium concentration profile in case of a fully oxidized piece of Ag-CdO</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Flow chart of IOAP Process for manufacture of Ag-Sn$_2$O$_2$ contact materials</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic of the electroless coating process for production of Ag-SnO$_2$ powders</td>
<td>30</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic diagram of the reaction spray set-up</td>
<td>33</td>
</tr>
<tr>
<td>2.11</td>
<td>Stages of powder evolution during mechanical alloying</td>
<td>37</td>
</tr>
<tr>
<td>2.12</td>
<td>Schematic diagrams for different high energy milling devices</td>
<td>40, 42, 44</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic diagram showing the dependence of surface, grain boundary and lattice diffusion on temperature</td>
<td>51</td>
</tr>
<tr>
<td>2.14</td>
<td>Sketch of the microstructure of ODS silver showing dispersoid-free soft small grains and larger hard grains with dispersoid</td>
<td>56</td>
</tr>
<tr>
<td>2.15</td>
<td>Flow sheet for production of Ag-SnO$_2$ contact materials by RM process</td>
<td>59</td>
</tr>
<tr>
<td>2.16</td>
<td>Schematic of press-sinter-extrude route for the production of Ag-CdO Contacts</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>Schematic of configuration of contacts in a commercial contactor</td>
<td>64</td>
</tr>
<tr>
<td>2.18</td>
<td>Schematic showing the erosion model of Ag-MeO contact materials</td>
<td>66</td>
</tr>
<tr>
<td>2.19</td>
<td>SEM sectional views for Ag-ZnO contact materials after the endurance testing showing various features</td>
<td>68</td>
</tr>
<tr>
<td>3.1</td>
<td>Photographs showing (a) attritor assembly and (b) expanded view of attritor vial</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>Pictorial view of the hot-pressing set-up used for hot-pressing of Ag-MeO compacts</td>
<td>87</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram of the press tools for hot pressing</td>
<td>88</td>
</tr>
<tr>
<td>4.1</td>
<td>Cumulative size distribution and density distribution plots for Ag-12 wt % CdO as-blended powder sample</td>
<td>94</td>
</tr>
<tr>
<td>4.2</td>
<td>Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 36 k revolutions (450 rpm) powder sample</td>
<td>96</td>
</tr>
</tbody>
</table>
4.3 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 72 k revolutions (450 rpm) powder sample

4.4 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 324 k revolutions (450 rpm) powder sample

4.5 Multiple plots showing particle size distribution for as-blended and milled Ag-12 wt % CdO MA powders

4.6 SEM micrograph for Ag-12 wt % CdO as-blended powder sample

4.7 SEM micrograph for Ag-12 wt % CdO 36 k revolutions (450 rpm) powder sample

4.8 SEM micrograph for Ag-12 wt % CdO 72 k revolutions (450 rpm) powder sample

4.9 SEM micrograph for Ag-12 wt % CdO 324 k revolutions (450 rpm) powder sample

4.10 Cumulative size distribution and density distribution plots for Ag-10 wt % SnO₂ as-blended powder sample

4.11 Cumulative size distribution and density distribution plots for Ag-10 wt % SnO₂ MA 36 k revolutions (450 rpm) powder sample

4.12 Cumulative size distribution and density distribution plots for Ag-10 wt % SnO₂ MA 72 k revolutions (450 rpm) powder sample

4.13 Cumulative size distribution and density distribution plots for Ag-10 wt % SnO₂ MA 324 k revolutions (450 rpm) powder sample

4.14 Multiple plots showing particle size distribution for as-blended and milled Ag-10 wt % SnO₂ MA powders

4.15 SEM micrograph for Ag-10 wt % SnO₂ as-blended powder sample

4.16 SEM micrograph for Ag-10 wt % SnO₂ MA 36 k revolutions (450 rpm) powder sample

4.17 SEM micrograph for Ag-10 wt % SnO₂ MA 72 k revolutions (450 rpm) powder sample

4.18 SEM micrograph for Ag-10 wt % SnO₂ MA 324 k revolutions (450 rpm) Powder sample

4.19 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 36 k revolutions (300 rpm) powder sample

4.20 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 72 k revolutions (300 rpm) powder sample

4.21 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 324 k revolutions (300 rpm) powder sample

4.22 Multiple plots showing particle size distribution for as-blended and milled Ag-12 wt % CdO MA (300 rpm) powders

4.23 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 36 k revolutions (600 rpm) powder sample

4.24 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 72 k revolutions (600 rpm) powder sample

(vi)
4.25 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 324 k revolutions (600 rpm) powder sample
4.26 Multiple plots showing particle size distribution for as-blended and milled Ag-12 wt % CdO MA (600 rpm) powders
4.27 Effect of attrition speed on powder particle size for Ag-12 wt % CdO composite powders subjected to milling
4.28 SEM micrograph for Ag-12 wt % CdO 36 k revolutions (300 rpm) powder sample
4.29 SEM micrograph for Ag-12 wt % CdO 72 k revolutions (300 rpm) powder sample
4.30 SEM micrograph for Ag-12 wt % CdO 324 k revolutions (300 rpm) powder sample
4.31 SEM micrograph for Ag-12 wt % CdO 36 k revolutions (600 rpm) powder sample
4.32 SEM micrograph for Ag-12 wt % CdO 72 k revolutions (600 rpm) powder sample
4.33 SEM micrograph for Ag-12 wt % CdO 324 k revolutions (600 rpm) powder
4.34 SEM micrograph for Ag-12 wt % CdO 36 k revolutions (300 rpm) 10:1 ball to charge (BTC) ratio powder sample
4.35 SEM micrograph for Ag-12 wt % CdO 72 k revolutions (300 rpm) 10:1 ball to charge (BTC) ratio powder sample
4.36 SEM micrograph for Ag-12 wt % CdO 324 k revolutions (300 rpm) 10:1 ball to charge (BTC) ratio powder
4.37 SEM micrograph for Ag-12 wt % CdO 36 k revolutions (300 rpm) 15:1 ball to charge (BTC) ratio powder sample
4.38 SEM micrograph for Ag-12 wt % CdO 72 k revolutions (300 rpm) 15:1 ball to charge (BTC) ratio powder sample
4.39 SEM micrograph for Ag-12 wt % CdO 324 k revolutions (300 rpm) 15:1 ball to charge (BTC) ratio powder
4.40 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO as-blended powder sample with 2 % PCA
4.41 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 36 k revolutions (600 rpm) powder Sample with 2 % PCA
4.42 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 72 k revolutions (600 rpm) powder Sample with 2 % PCA
4.43 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 324 k revolutions (600 rpm) powder Sample with 2 % PCA
4.44 Effect of addition of PCA on particle size for Ag-12 wt % CdO composite powders subjected to milling

4.45 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 36 k revolutions (600 rpm) powder Sample with 3 % PCA

4.46 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 72 k revolutions (600 rpm) powder Sample with 3 % PCA

4.47 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 324 k revolutions (600 rpm) powder Sample with 3 % PCA

4.48 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 36 k revolutions (600 rpm) powder Sample with 4 % PCA

4.49 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 72 k revolutions (600 rpm) powder Sample with 4 % PCA

4.50 Cumulative size distribution and density distribution plots for Ag-12 wt % CdO MA 324 k revolutions (600 rpm) powder Sample with 4 % PCA

4.51 Effect of amount of PCA on particle size for Ag-12 wt % CdO composite powders subjected to milling

4.52 Cumulative size distribution and density distribution plots for Ag2O-10.5 wt % Cd as-blended powder sample

4.53 Cumulative size distribution and density distribution plots for Ag2O-10.5 wt % Cd RM 3 h milled powder sample

4.54 Multiple plots showing particle size distribution for Ag2O-10.5 wt % Cd as-blended and reaction milled (RM) powder samples

4.55 SEM micrograph for Ag2O-10.5 wt % Cd as-blended powder sample

4.56 SEM micrograph for Ag2O-10.5 wt % Cd RM 3 h milled powder sample

4.57 Cumulative size distribution and density distribution plots for Ag2O-7.87 wt % Sn as-blended powder sample

4.58 Cumulative size distribution and density distribution plots for Ag2O-7.87 wt % Sn RM 4 h milled powder sample

4.59 Multiple plots showing particle size distribution for Ag2O-7.87 wt % Sn as-blended and reaction milled (RM) powder samples

4.60 SEM micrograph for Ag2O-7.87 wt % Sn as-blended powder Sample

(viii)
4.61 SEM micrograph for Ag$_2$O-7.87 wt % Sn RM 4 h milled powder sample
4.62 X-ray diffraction (XRD) pattern for silver powder sample
4.63 X-ray diffraction (XRD) pattern for cadmium powder sample
4.64 X-ray diffraction (XRD) pattern for tin powder sample
4.65 X-ray diffraction (XRD) pattern for cadmium oxide powder sample
4.66 X-ray diffraction (XRD) pattern for tin oxide powder sample
4.67 X-ray diffraction (XRD) pattern for silver oxide powder sample
4.68 X-ray diffraction (XRD) profile for Ag-12 wt % CdO as-blended powder sample
4.69 X-ray diffraction (XRD) profile for Ag-12 wt % CdO (MA) powder after 36 k revolutions
4.70 X-ray diffraction (XRD) profile for Ag-12 wt % CdO (MA) powder after 72 k revolutions
4.71 X-ray diffraction (XRD) profile for Ag-12 wt % CdO (MA) powder after 324 k revolutions
4.72 Multiple XRD plots for Ag-12 wt % CdO as-blended and milled powder samples
4.73 X-ray diffraction (XRD) profile for Ag-10 wt % SnO$_2$ as-blended powder sample
4.74 X-ray diffraction (XRD) profile for Ag-10 wt % SnO$_2$ (MA) powder after 36 k revolutions
4.75 X-ray diffraction (XRD) profile for Ag-10 wt % SnO$_2$ (MA) powder after 72 k revolutions
4.76 X-ray diffraction (XRD) profile for Ag-10 wt % SnO$_2$ (MA) powder after 324 k revolutions
4.77 Multiple XRD plots for Ag-10 wt % SnO$_2$ as-blended and milled powder samples
4.78 X-ray diffraction (XRD) profile for Ag$_2$O-10.5 wt % Cd as-blended powder sample
4.79 X-ray diffraction (XRD) profile for Ag$_2$O-10.5 wt % Cd (RM) powder after 1 h milling
4.80 X-ray diffraction (XRD) profile for Ag$_2$O-10.5 wt % Cd (RM) powder after 2 h milling
4.81 X-ray diffraction (XRD) profile for Ag$_2$O-10.5 wt % Cd (RM) powder after 3 h milling
4.82 Multiple XRD plots for Ag$_2$O-10.5 wt % Cd as-blended and reaction-milled (RM) powder samples
4.83 X-ray diffraction (XRD) profile for Ag$_3$O-7.87 wt % Sn as-blended powder sample
4.84 X-ray diffraction (XRD) profile for Ag$_3$O-7.87 wt % Sn (RM) powder after 1 h milling

(ix)
4.85 X-ray diffraction (XRD) profile for Ag₂O-7.87 wt % Sn (RM) powder after 4 h milling
4.86 Multiple XRD plots for Ag₂O-7.87 wt % Sn as-blended and reaction-milled (RM) powder samples
4.87 X-ray diffraction (XRD) profile for Ag-12 wt % CdO precursor route (PR) as-blended powder sample
4.88 X-ray diffraction (XRD) profile for Ag-12 wt % CdO precursor route (PR) powder after 8 h milling
4.89 Multiple XRD plots for Ag-12 wt % CdO precursor route (PR) as-blended and milled powder samples
4.90 SEM micrograph for Ag-12 wt % CdO precursor route (PR) as-blended powder sample
4.91 SEM micrograph for Ag-12 wt % CdO precursor route (PR) powder after 8 h milling
4.92 X-ray diffraction (XRD) profile for Ag-10 wt % SnO₂ precursor route (PR) as-blended powder sample
4.93 X-ray diffraction (XRD) profile for Ag-10 wt % SnO₂ precursor route (PR) powder after 12 h milling
4.94 Multiple XRD plots for Ag-10 wt % SnO₂ precursor route (PR) as-blended and milled powder samples
4.95 SEM micrograph for Ag-10 wt % SnO₂ precursor route (PR) as-blended powder sample
4.96 SEM micrograph for Ag-10 wt % SnO₂ precursor route (PR) powder after 12 h milling
4.97 Change in crystallite size for silver v/s number of shaft revolutions for Ag-12 wt % CdO (MA) and Ag-10 wt % SnO₂ (MA) powders
4.98 XPS survey scan for Ag₂O-10.5 wt % Cd as-blended and reaction milled (RM) powder after 3 h milling
4.99 XPS survey scan for Ag₂O-7.87 wt % Sn as-blended and reaction milled (RM) powder after 3 h milling
4.100 DSC trace of pure Ag₂O powder sample
4.101 DSC scan of Ag₂O-Cd powder after 3 h milling
4.102 DSC scan of Ag₂O-Sn powder after 4 h milling
4.103 (a) Bright-field transmission electron micrograph for Ag-12 wt. % CdO MA powder after 324 k revolutions
4.103 (b) Selected area electron diffraction (SAED) pattern for Ag-12 wt. % CdO MA powder after 324 k revolutions
4.104 Bright-field transmission electron micrograph for Ag-10 wt. % SnO₂ MA powder after 324 k revolutions

(x)
4.105 (a) Bright-field transmission electron micrograph for
Ag$_2$O-10.5 wt. % Cd reaction milled (RM) powder

4.105 (b) Selected area electron diffraction (SAED) pattern for
Ag$_2$O-10.5 wt. % Cd reaction milled (RM) powder

4.106 Bright-field transmission electron micrograph for
Ag$_2$O-7.87 wt. % Sn reaction milled (RM) powder

4.107 Histograms showing microhardness for Ag-CdO systems

4.108 Histograms showing microhardness for Ag-SnO$_2$ systems

4.109 SEM micrograph for Ag-12 wt % CdO (as-blended) hot-pressed sample

4.110 SEM micrograph for Ag-12 wt % CdO (MA) hot-pressed sample

4.111 SEM micrograph for Ag-12 wt % CdO (RM) hot-pressed sample

4.112 SEM micrograph for Ag-12 wt % CdO (PR) hot-pressed sample

4.113 SEM micrograph for Ag-15 wt % CdO commercial contact material

4.114 SEM micrograph for Ag-10 wt % SnO$_2$ (as-blended) hot-pressed sample

4.115 SEM micrograph for Ag-10 wt % SnO$_2$ (MA) hot-pressed sample

4.116 SEM micrograph for Ag-10 wt % SnO$_2$ (RM) hot-pressed sample

4.117 SEM micrograph for Ag-10 wt % SnO$_2$ (PR) hot-pressed sample

4.118 SEM micrograph for Ag-10 wt % SnO$_2$ (RM) hot-pressed sample at 2500 x

4.119 SEM micrograph for Ag-10 wt % SnO$_2$ commercial contact material

4.120 Variation of electrical conductivity with percent oxide phase for Ag-CdO systems

4.121 Variation of electrical conductivity with percent oxide phase for Ag-SnO$_2$ systems

4.122 Weight loss due to arc erosion v/s no. of make & break operations
for Ag-10 wt % SnO$_2$ produced by RM route

4.123 Weight loss due to arc erosion v/s no. of make & break operations
for Ag-12 wt % CdO produced by PR route

4.124 Weight loss due to arc erosion v/s no. of make & break operations
for Ag-10 wt % SnO$_2$ produced by PR route