List of Figures

Chapter-I

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>Comparison of electronic and nuclear stopping at different energy range</td>
<td>15</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Interaction of ion beam with target material</td>
<td>16</td>
</tr>
</tbody>
</table>

Chapter-II

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Schematic of sputtering Unit</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Schematic representation of Cyclotron accelerator</td>
<td>48</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Schematic representation of working principle of Pelletron</td>
<td>51</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>Material Science Irradiation Chamber at IUAC, New Delhi</td>
<td>52</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>Impedance gain/phase analyser (Solartron-1260)</td>
<td>59</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>Polarization in dielectric material</td>
<td>63</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>Vicker's Microhardness Indenter Future Tech. (FM-700)</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>Shimadzu’s X-ray diffractionmeter and diffraction phenomenon</td>
<td>68</td>
</tr>
<tr>
<td>Fig. 2.9</td>
<td>Reflection of X-rays from two planes of atoms in a solid</td>
<td>69</td>
</tr>
<tr>
<td>Fig. 2.10</td>
<td>Thermo-Nicolet NEXUS 670</td>
<td>72</td>
</tr>
<tr>
<td>Fig. 2.11</td>
<td>Instrumentation and working principle of AFM</td>
<td>73</td>
</tr>
<tr>
<td>Fig. 2.12</td>
<td>(a) SEM unit (b) coating unit (c) working principle</td>
<td>75</td>
</tr>
<tr>
<td>Fig. 2.13</td>
<td>Schematic diagram for the working principle of DSC</td>
<td>77</td>
</tr>
<tr>
<td>Fig. 2.14</td>
<td>Different phenomenon taking place during DSC measurement</td>
<td>78</td>
</tr>
<tr>
<td>Fig. 2.15</td>
<td>Electronic levels in energy absorption</td>
<td>80</td>
</tr>
<tr>
<td>Fig. 2.16</td>
<td>Schematic of a dual-beam UV-Vis spectrophotometer</td>
<td>81</td>
</tr>
<tr>
<td>Fig. 2.17</td>
<td>Working principle of MFM</td>
<td>82</td>
</tr>
<tr>
<td>Fig. 2.18</td>
<td>(a) Josephson Junction formation and (b) Principle of SQUID</td>
<td>84</td>
</tr>
</tbody>
</table>
Chapter-III

Fig. 3.1 Conductivity versus log frequency for pristine and proton irradiated films of (a) Pure PMMA, (b) PMMA+5% Fo, (c) PMMA+10% Fo, (d) PMMA+15% Fo doped films (e) conductivity versus filler concentration at 1 MHz

Fig. 3.2 Dielectric constant vs log frequency for pristine and proton irradiated films of (a) Pure PMMA, (b) PMMA+5% Fo, (c) PMMA+10% Fo, (d) PMMA+15% Fo (e) dielectric constant vs. filler concentration at 1 MHz.

Fig. 3.3 Dielectric loss (tanδ) vs log frequency for pristine and proton irradiated films of (a) Pure PMMA (b) PMMA+5% Fo (c) PMMA+10% Fo (d) PMMA+15% Fo

Fig. 3.4 Microhardness vs applied load for pristine and proton irradiated films of (a) Pure PMMA (b) PMMA+5% Fo (c) PMMA+10% Fo (d) PMMA+15% Fo

Fig. 3.5 AFM image of (a) Pure PMMA (Pristine) (b) Pure PMMA (Proton irradiated) (c) PMMA+5% Fo (Pristine) (d) PMMA+5% Fo (Proton irradiated) (e) PMMA+10% Fo (Pristine) (f) PMMA+10% Fo (Proton irradiated) (g) PMMA+15% Fo (Pristine) (h) PMMA+15% Fo (Proton irradiated)

Fig. 3.6 FTIR spectra of pristine and proton irradiated $\left(5 \times 10^{12} \text{ ions/cm}^2\right)$ films of PMMA+Fo composites

Fig. 3.7 Conductivity versus log frequency of pristine and proton irradiated films of (a) PMMA+10% Pd(acac) (b) PMMA+20% Pd(acac) (c) PMMA+30% Pd(acac) (d) PMMA+40% Pd(acac). (e) conductivity vs. filler concentration of films at 1 MHz

Fig. 3.8 Dielectric constant versus log frequency of pristine and proton irradiated films of (a) PMMA+10% Pd(acac) (b) PMMA+20% Pd(acac) (c)
PMMA+30%Pd(acac) (d) PMMA+40%Pd(acac). (e) dielectric constant vs. filler concentration at 1 MHz.

Fig. 3.9 Dielectric loss versus log frequency of pristine and proton irradiated films of (a) PMMA+10%Pd(acac) (b) PMMA+20%Pd(acac) (c) PMMA+30%Pd(acac) (d) PMMA+40%Pd(acac).

Fig. 3.10 XRD spectrums of pristine and proton irradiated (a)Pd(acac) powder (b)pure PMMA (c) PMMA+10% Pd(acac) (d)PMMA+20% Pd(acac) (e)PMMA+30%Pd(acac) (f) PMMA+40% Pd(acac) films.

Fig. 3.11 FTIR spectra of (a) pristine and (b) proton irradiated (5x10^{12} ions/cm^2) PMMA+Pd(acac) composite.

Fig. 3.12 AFM images of (a) PMMA+10%Pd(acac)-Pristine (b) PMMA+10%Pd(acac)-Proton irradiated (c) PMMA+30%Pd(acac)-Pristine (d) PMMA+30%Pd(acac)-Proton irradiated.

Fig. 3.13 SEM images of (a) Pure PMMA-pristine (b) Pure PMMA-proton irradiated (c) PMMA+10%Pd(acac)-pristine (d) PMMA+10%Pd(acac)-proton irradiated (e) PMMA+30%Pd(acac)-pristine and (f) PMMA+30%Pd(acac)-proton irradiated films.

Fig. 3.14 DSC pattern for pure PMMA (pristine) and pristine and proton irradiated PMMA+40% Pd (acac) films.

Fig. 3.15 Conductivity vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni composites, (c) conductivity vs. filler concentration at 1 MHz.
Fig.3.16 Dielectric constant vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni composites, (c) dielectric constant vs. filler concentration at 1 MHz

Fig.3.17 Dielectric loss (tanδ) vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni composites

Fig.3.18 XRD spectrum of (a) pure PMMA and filler (Ni -powder), (b) pristine and (c) proton irradiated (5x10^{12} ions/cm²) PMMA+Ni composites

Fig.3.19 FTIR Spectra of (i) pristine and (ii) proton irradiated films of (a) pure PMMA, (b) PMMA+10%Ni, (c) PMMA+20%Ni, (d) PMMA+30%Ni and (e) PMMA+40%Ni

Fig.3.20 AFM images of (a) pristine PMMA (b) proton irradiated PMMA (c) pristine PMMA+20% Ni (d) proton irradiated PMMA+20% Ni (e) pristine PMMA+30% Ni (f) proton irradiated PMMA+30% Ni films

Fig.3.21 SEM images of (a) PMMA+10% Ni (pristine) (b) PMMA+10%Ni (proton irradiated) (c) PMMA+20% Ni(Pristine) (d) PMMA+20% Ni(Proton irradiated) films

Fig.3.22 Conductivity vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites (c) conductivity vs. filler concentration at 1 MHz

Fig.3.23 Dielectric constant vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites, (c) dielectric constant vs. filler concentration at 1 MHz

Fig.3.24 Dielectric loss vs. log frequency for (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites
Fig. 3.25 XRD pattern of (a) pristine and (b) proton irradiated PMMA+Ni-DMG composites

Fig. 3.26 AFM image of (a) PMMA+5%Ni-DMG(pristine), (b) PMMA+5%Ni-DMG(proton irradiated), (c)PMMA+10%Ni-DMG(pristine), (d) PMMA+10%Ni-DMG(proton irradiated), (e) PMMA+15%Ni-DMG(pristine), (f)PMMA+15%Ni-DMG(proton irradiated)

Fig. 3.27 Comparison of conductivity of pristine and proton irradiated (5x10^{12} ions/cm^{2}) composites at 10 MHz frequency for different filler in PMMA

Fig. 3.28 Comparison of dielectric constant of pristine and proton irradiated (5x10^{12} ions/cm^{2}) composites at 10 MHz frequency for different filler in PMMA

Chapter-IV

Fig. 4.1 AC conductivity versus log frequency of pristine and Ni irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo (e) Variation of AC conductivity with filler concentration at 1 MHz

Fig. 4.2 Dielectric constant versus log frequency for pristine and Ni irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo composite (e) Dielectric constant versus filler concentration at 1 MHz

Fig. 4.3 Dielectric loss versus log frequency for pristine and Ni irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo composite
Fig. 4.4 Vickers microhardness versus applied load for pristine and Ni irradiated films of (a) Pure PMMA, (b) PMMA+5% Fo, (c) PMMA+10% Fo and (d) PMMA+15% Fo

Fig. 4.5 FTIR spectra of (a) pristine and (b) Ni irradiated (5x10^{12} ions/cm^2) PMMA+Fo composite

Fig. 4.6 AFM images of (a) pure PMMA(pristine) (b) Pure PMMA(Ni irradiated) (c) PMMA+5% Fo (pristine) (d) PMMA+5% Fo (Ni irradiated) (e) PMMA+10% Fo (pristine) (f)PMMA+10% Fo (Ni irradiated) (g) PMMA+15% Fo (pristine) (h) PMMA+15% Fo (Ni irradiated) films

Fig. 4.7 SEM micrographs of (a) pure PMMA(pristine), (b) pure PMMA (Ni irradiated), (c) PMMA+5%Fo (pristine), (d) PMMA+5%Fo (Ni irradiated), (e) PMMA+10%Fo (pristine), (f) PMMA+10%Fo (Ni irradiated), (g) PMMA+15%Fo (pristine) and (h) PMMA+15%Fo (Ni irradiated) films

Fig. 4.8 DSC thermogram of (A) pure PMMA(pristine), (B) PMMA+15%Fo (pristine) and (C) PMMA+15%Fo (Ni irradiated) films

Fig. 4.9 AC conductivity versus log frequency for pristine and Ni irradiated (a) Pure PMMA, (b) PMMA+10% Pd(acac) (c) PMMA+30% Pd(acac) (d) PMMA+40% Pd(acac) films (e) AC conductivity at different filler concentration at 1 MHz

Fig. 4.10 Dielectric constant versus log frequency of (a) Pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac), (d) PMMA+40% Pd(acac) films (e) Dielectric constant at different filler concentration at 1 MHz
Fig. 4.11 Dielectric loss (tanδ) versus log frequency of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac), (d) PMMA+40% Pd(acac) films

Fig. 4.12 XRD spectrum of (a) Pd(acac) powder, Pristine and Ni irradiated composites of (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac)

Fig. 4.13 FTIR spectrum for (a) pristine and (b) Ni irradiated PMMA+Pd(acac) composite

Fig. 4.14 SEM images of (a) pure PMMA (pristine), (b) pure PMMA (Ni irradiated), (c) PMMA+10% Pd(acac) (pristine), (d)PMMA+10% Pd(acac), (e) PMMA+30%Pd(acac) (pristine) and (f) PMMA+30%Pd(acac)(Ni irradiated) films

Fig. 4.15 Optical images of pristine films (a)pure PMMA (b) PMMA+10% Pd(acac) and (c) PMMA+30% Pd(acac)

Fig. 4.16 DSC pattern of (a) pure PMMA (pristine) and (b) PMMA+40% Pd (acac)(pristine) and (c) PMMA+40% Pd (acac) (Ni irradiated)

Fig. 4.17 AC conductivity versus log frequency for (a) Pristine and (b) Ni irradiated (PMMA+Ni) composite (c) AC conductivity versus filler concentration at 1 MHz

Fig. 4.18 Dielectric constant versus log frequency for (a) pristine and (b) Ni irradiated (PMMA+Ni) samples (c) dielectric constant versus concentration of filler at 1 MHz
Fig. 4.19 Dielectric loss versus log frequency for (a) pristine and (b) Ni irradiated (PMMA+Ni) films.

Fig. 4.20 XRD spectrum of (a) pure PMMA and filler (Ni powder) (b) pristine and (c) Ni irradiated (PMMA+Ni) composites.

Fig. 4.21 FTIR spectrum of (a) pristine and (b) Ni irradiated (PMMA+Ni) composites.

Fig. 4.22 AFM images for (a) PMMA+10% Ni (pristine), (b) PMMA+10% Ni (5x10^{12} ions/cm^2) (c) PMMA+40% Ni (Pristine), (d) PMMA+40% Ni (5x10^{12} ions/cm^2) films.

Fig. 4.23 SEM micrographs of (a) PMMA+10%Ni (pristine), (b) PMMA+10%Ni (Ni irradiated), (c) PMMA+40% Ni (pristine) and (d) PMMA+40% Ni (Ni irradiated) films.

Fig. 4.24 AFM images of (a) Pure PI (pristine) (b) Pure PI (Ni irradiated) (c) PI+0.5% Fe (pristine) (d) PI+0.5% Fe (Ni irradiated) (e) PI+1% Fe (pristine) (f) PI+1% Fe (Ni irradiated) (g) PI+5% Fe (pristine) (h) PI+5% Fe (Ni irradiated) films.

Fig. 4.25 (a,c,e,g,i,k) diagonal profile section magnetic force gradient and (b,d,f,h,j,l) Magnetic force gradient topographic images of pristine and Ni irradiated PI+0.5%Fe, PI+1%Fe and PI+5%Fe composites respectively.

Fig. 4.26 SQUID analysis of pristine and Ni irradiated PI+5% Fe films.

Fig. 4.27 Variation in band gap energy with filler (Fe) concentration.
Fig. 4.28 Comparison of conductivity of pristine and Ni irradiated (5×10^{12} ions/cm2) composites at 10 MHz for different filler in PMMA

Fig. 4.29 Comparison of dielectric constant of pristine and Ni irradiated (5×10^{12} ions/cm2) composites at 10 MHz for different filler in PMMA

Chapter-V

Fig. 5.1 AC conductivity versus log frequency of pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo (e) Variation of AC conductivity with filler concentration at 1 MHz

Fig. 5.2 Dielectric constant versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo films (e) Variation of AC conductivity with filler concentration at 1 MHz

Fig. 5.3 Dielectric loss versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+5%Fo, (c) PMMA+10%Fo and (d) PMMA+15%Fo films

Fig. 5.4 FTIR spectra of (a) pristine and (b) Ag irradiated (5×10^{12} ions/cm2) films

Fig. 5.5 AFM images of (a) PMMA+5% Fo (pristine) (b) PMMA+5% Fo (Ag irradiated) (c) PMMA+10% Fo (pristine) (d) PMMA+10% Fo (Ag irradiated) (e) PMMA+15% Fo (pristine) (f) PMMA+15% Fo (Ag irradiated)

Fig. 5.6 AC conductivity versus log frequency of pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac) films (e) Variation of AC conductivity with filler concentration at 1 MHz
Fig. 5.7 Dielectric constant versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac) films (e) Variation of AC conductivity with filler concentration at 1 MHz

Fig. 5.8 Dielectric loss versus log frequency for pristine and Ag irradiated films of (a) pure PMMA, (b) PMMA+10% Pd(acac), (c) PMMA+30% Pd(acac) and (d) PMMA+40% Pd(acac) films

Fig. 5.9 XRD spectrum of Pristine and Ag irradiated composites of (a) PMMA+10% Pd(acac), (b) PMMA+30% Pd(acac) and (c) PMMA+40% Pd(acac)

Fig. 5.10 FTIR spectrum for (a) pristine and (b) Ag irradiated composite films

Fig. 5.11 AFM images of 140 MeV Ag$^{11+}$ Ag irradiated (a) PMMA+10% Pd(acac) and (b) PMMA+30% Pd(acac)

Fig. 5.12 Comparison of conductivity of pristine and Ag irradiated (5x1012 ions/cm2) composites at 10 MHz for different filler in PMMA

Fig. 5.13 Comparison of dielectric constant of pristine and Ag irradiated (5x1012 ions/cm2) composites at 10 MHz for different filler in PMMA

Chapter-VI

Fig. 6.1 Variation in conductivity with respect to (a) filler concentration (b) ion species and (c) ion fluence at 10 MHz for PMMA+Pd composite

Fig. 6.2 Variation in dielectric constant with respect to (a) filler concentration (b) ion species and (c) ion fluence at 100 kHz for PMMA+Pd composite
Fig. 6.3 Variation in dielectric loss with respect to (a) filler concentration (b) ion species and (c) ion fluence at 1 MHz for PMMA+Pd composite

Fig. 6.4 Vicker's microhardness as a function of (a) filler concentration and (b) ion specie and (c) ion fluence at load of 600 mN

Fig. 6.5 Crystalline size and % crystallinity by XRD as a function of (a) filler concentration and (b) ion specie and (c) ion fluence for PMMA+Pd(acac) composites

Fig. 6.6 FTIR spectra for pristine and (proton/Ni/Ag) irradiated films of PMMA+10%Pd(acac)