Chapter 8

Colouring - Extension to Fuzzy Graph Structures

In this chapter, we extend the concepts of vertex coloring, edge coloring and total coloring of fuzzy graphs discussed in [66], [54] and [53] to fuzzy graph structures. We also introduce a new concept, namely, relation colouring of graph structures as well as fuzzy graph structures.

8.1 Vertex colouring of a fuzzy graph structure

First we define the \(R_i \)-colouring and \(R_i \)-chromatic number of a graph structure. Our definition is different from the edge coloring concept of [61].

Definition 8.1.1. An \(R_i \)-vertex colouring of a graph structure \(G = (V, R_1, R_2, \ldots, R_k) \) is an assignment of colours to its points so that no two points which are adjacent by an \(R_i \)-edge have the same colour.

Definition 8.1.2. An \(n-R_i \)-colouring of a graph structure \(G = (V, R_1, R_2, \ldots, R_k) \) is such an \(R_i \)-vertex colouring which uses \(n \) colours.

\(^1\)Some results of this chapter are included in the paper Colouring of Fuzzy Graph Structures, Communicated.
Definition 8.1.3. The R_i-chromatic number $\chi_i(G)$ is the minimum n for which G has an n-R_i-colouring.

We define vertex colouring for a fuzzy graph structure on the lines of Muñoz et al.[66]. For this, we take $\tilde{G}^* = (\text{supp}(\mu), \rho_1, \rho_2, \ldots, \rho_k)$.

$\tilde{G}_{i}^{\alpha} = (\text{supp}(\mu), \rho_1, \rho_2, \ldots, \rho_i^\alpha, \ldots, \rho_k)$, where $\alpha \in I_i$.

$\rho_i^\alpha = \{(r, s)|\rho_i(r, s) \geq \alpha, \alpha \in I\}$. Let χ_i^α be the ρ_i-chromatic number of \tilde{G}_{i}^{α}.

Convention: Throughout this section, unless otherwise specified, we take \tilde{G} as a fuzzy graph structure $(\mu, \rho_1, \rho_2, \ldots, \rho_k)$ with $\text{supp}(\mu) = V$ of a graph structure $G = (V, R_1, R_2, \ldots, R_k)$.

Definition 8.1.4. Given a fuzzy graph structure \tilde{G}, the ρ_i-chromatic number of \tilde{G} is $\chi_i(\tilde{G}) = \{(x, \nu_i(x))|x \in X\}$ where $X = \{1, 2, \ldots, |V|\}$,

$\nu_i(x) = \sup \{\alpha \in I|x \in A_i^\alpha\} \forall x \in X, A_i^\alpha = \{1, 2, \ldots, \chi_i^\alpha\}\forall \alpha \in I_i$.

Definition 8.1.5. Given a fuzzy graph structure \tilde{G}, the chromatic number of \tilde{G} is $\chi(\tilde{G}) = \{((x, \nu_1(x)), (x, \nu_2(x)), \ldots, (x, \nu_k(x)))|x \in X\}$, where $X = \{1, 2, \ldots, |V|\}$,

$\nu_i(x) = \sup \{\alpha_i \in I|x \in A_i^{\alpha_i}\} \forall x \in X, A_i^{\alpha_i} = \{1, 2, \ldots, \chi_i^{\alpha_i}\}\forall \alpha_i \in I_i$,

$i = 1, 2, \ldots, k$.

Now we move on to (d_i, f_i)-extended colouring.

§ (d_i, f_i)-extended ρ_i-colouring

Let S_i be the available ρ_i-colour set. d_i be the ρ_i-dissimilarity measure defined by $d_i : S_i \times S_i \rightarrow [0, \infty)$ with

i. $d_i(r, s) \geq 0 \forall r, s \in S_i$
ii. \(d_i(r, s) = 0 \iff r = s \forall r, s \in S_i \)

iii. \(d_i(r, s) = d_i(s, r) \forall r, s \in S_i \)

\(I_i \) be the image of membership function of fuzzy graph structure.

\(f_i : I_i \rightarrow [0, \infty) \) be non negative, non-decreasing and real scale function.

ie., \(f_i(a) \leq f_i(a') \forall a, a' \in I_i, a < a' \).

Definition 8.1.6. Given a fuzzy graph structure \(\tilde{G} \) of \(G \), a colour set \(S_i \), a \(\rho_i \)-dissimilarity measure \(d_i \) defined on \(S_i \) and a \(\rho_i \)-scale function \(f_i \), a \((d_i, f_i) \)-extended \(\rho_i \)-coloring function \(\tilde{C}_i \) is a mapping \(\tilde{C}_i : V \rightarrow S_i \) with the property

\[d_i(\tilde{C}_i(r), \tilde{C}_i(s)) \geq f_i(\rho_i(r, s)) \forall r, s \in V \text{ such that } r \neq s. \]

A \((d_i, f_i) \)-extended \(p_i \)-\(\rho_i \)-coloring \(C_{p_i}^i \) is a \((d_i, f_i) \)-extended colouring function with no more than \(p_i \) different colors, \(C_{p_i}^i : V \rightarrow S_i \) where \(S_i = \{1, 2, \ldots, p_i\} \).

Definition 8.1.7. Given a fuzzy graph structure \(\tilde{G} \), a \(\rho_i \)-dissimilarity measure \(d_i \) and a \(\rho_i \)-scale function \(f_i \), the minimum value \(p_i \) for which a \((d_i, f_i) \)-extended \(\rho_i \)-colouring of \(\tilde{G} \) exists is the \((d_i, f_i) \)-\(\rho_i \)-chromatic number of \(\tilde{G} \) denoted by \(\chi_i^{(d_i, f_i)}(\tilde{G}) \).

\(\text{§}(d, f) \)-extended colouring

Now we generalise the above concepts to get a \((d, f) \)-extended colouring of a fuzzy graph structure as follows.

\((d, f) \)-extended colouring problem consists of determining the \((d_i, f_i) \)-\(\rho_i \)-chromatic numbers of the fuzzy graph structure and the associated \((d_i, f_i) \)-extended \(\rho_i \)-colouring functions \(C_i \) for \(i = 1, 2, \ldots, k \).

Thus we have \(\chi = (\chi_1, \chi_2, \ldots, \chi_k); C = (C_1, C_2, \ldots, C_k); f = (f_1, f_2, \ldots, f_k). \) Here

\(C : V^k \rightarrow S_1 \times S_2 \times \ldots \times S_k \)

\(f : I_1 \times I_2 \times \ldots \times I_k \rightarrow [0, \infty)^k. \) We say that \(C \) is a \((d, f) \)-extended colouring function if

\[d_i(C_i(r), C_i(s)) \geq f_i(\rho_i(r, s)) \forall r, s \in V, r \neq s, i = 1, 2, \ldots, k. \]

A \((d, f) \)-extended
\[p = (p_1, p_2, \ldots, p_k) \text{-colouring} \]

\[C^p \text{ is a } (d, f) \text{-extended colouring function with no more than } p \text{ different colours, i.e., } C^p : V^k \rightarrow S_1 \times S_2 \times \cdots \times S_k \text{ where } S_i = \{1, 2, \ldots, p_i\}. \]

Definition 8.1.8.

Given a fuzzy graph structure \(\tilde{G} \), a \(\rho_{i_1i_2\ldots i_r} \)-colour set \(\bigcup_{i=1}^{i_r} S_i \), a \(\rho_{i_1i_2\ldots i_r} \)-dissimilarity measure \(d_{i_1i_2\ldots i_r} \) defined on \(\bigcup_{i=1}^{i_r} S_i \) and a \(\rho_{i_1i_2\ldots i_r} \)-scale function \(f_{i_1i_2\ldots i_r} \), a \((d_{i_1i_2\ldots i_r}, f_{i_1i_2\ldots i_r}) \)-extended \(\rho_{i_1i_2\ldots i_r} \)-coloring function of \(\tilde{G} \) denoted as \(C_i \) is a mapping \(C_i : V \rightarrow \bigcup_{i=1}^{i_r} S_i \) with the property

\[d_{i_1i_2\ldots i_r}(C_i(r), C_i(s)) \geq f_{i_1i_2\ldots i_r}(\rho_i(r, s)) \forall r, s \in V \text{ such that } r \neq s \text{ where } (r, s) \text{ is a } \rho_i \text{-edge, } i_1 \leq i \leq i_r. \]

A \((d_{i_1i_2\ldots i_r}, f_{i_1i_2\ldots i_r}) \)-extended \(\rho_{i_1i_2\ldots i_r} \)-coloring \(C^{pi_1i_2\ldots i_r} \) is a \((d_{i_1i_2\ldots i_r}, f_{i_1i_2\ldots i_r}) \)-extended \(\rho_{i_1i_2\ldots i_r} \)-colouring function with no more than \(p_1 + p_2 + \cdots + p_r \).
different colors, i.e., \(C_{i}^{p_{i}} : V \to \bigcup_{i=1}^{i_{r}} S_{i} \) where
\(S_{i} = \{1, 2, ..., p_{i}\} \).

Definition 8.1.9. Given a fuzzy graph structure \(G \), a \(\rho_{i_{1}i_{2}...i_{r}} \)-dissimilarity measure \(d_{i_{1}i_{2}...i_{r}} \) and a \(\rho_{i_{1}i_{2}...i_{r}} \)-scale function \(f_{i_{1}i_{2}...i_{r}} \), the minimum value \(\sum_{i=1}^{i_{r}} p_{i} \) for which a \(\rho_{i_{1}i_{2}...i_{r}} \)-extended \(d_{i_{1}i_{2}...i_{r}}, f_{i_{1}i_{2}...i_{r}} \)-colouring of \(\tilde{G} \) exists is the \(\rho_{i_{1}i_{2}...i_{r}} \)-chromatic number of \(\tilde{G} \) denoted by \(\chi_{i_{1}i_{2}...i_{r}}^{(d_{i_{1}i_{2}...i_{r}}, f_{i_{1}i_{2}...i_{r}})}(\tilde{G}) \).

Note that we can select \(r \) among \(\rho_{1}, \rho_{2}, ..., \rho_{k} \) in \(k(k-1)(k-2)...(k-r+1) \) ways.

So the following result is obvious.

Result 1

There exist \(k(k-1)(k-2)...(k-r+1) \) different vertex \(\rho_{i_{1}i_{2}...i_{r}} \)-colourings for a fuzzy graph structure \(\tilde{G} \).

8.2 Some results on vertex colouring of a fuzzy graph structure

Now we recall the following result from [31] and extend it to fuzzy graph structures.

Convention: Throughout this section, unless otherwise specified, we take \(\tilde{G} \) as a fuzzy graph structure \((\mu, \rho_{1}, \rho_{2}, ..., \rho_{k}) \) with \(\text{supp}(\mu) = V \) of a graph structure \(G = (V, R_{1}, R_{2}, ..., R_{k}) \).

Theorem 8.2.1. [31] For any graph \(G \) and any elementary homomorphism \(\phi \) of \(G \),
\(\chi(G) \leq \chi(\phi G) \) where \(\chi(G) \) is the chromatic number of \(G \).

Theorem 8.2.2. Let \(\tilde{G} \) be a fuzzy graph structure and \(\epsilon_{i} \) a \(\rho_{i} \)-homomorphism on \(\tilde{G} \).
Let \(\chi_{i} \) be the \(\rho_{i} \)-chromatic number of \(\tilde{G} \). Then \(\chi_{i}(\tilde{G}) \leq \chi_{i}(\epsilon_{i}\tilde{G}) \).
Proof. Let $\chi_i(\epsilon, \tilde{G}) = r$.

Then $d_i(C^k_i(\epsilon, u), C^k_i(\epsilon, v)) \geq f_i(\rho_i(\epsilon, u, \epsilon, v))$. If we use the same ρ_i-colouring for \tilde{G}, we have

$d_i(C^k_i(u), C^k_i(v)) = d_i(C^k_i(\epsilon, u), C^k_i(\epsilon, v)) \geq f_i(\rho_i(\epsilon, u, \epsilon, v)) \geq f_i(\rho_i(u, v))$ since ϵ is a ρ_i-homomorphism.

Therefore $\chi_i(\tilde{G}) \leq \chi_i(\epsilon, \tilde{G})$. \qed

Theorem 8.2.3. Let \tilde{G} be a fuzzy graph structure and $\epsilon_{i_{1_{1}2_{...i}}}i_r$ be a $\rho_{i_{1_{1}2_{...i}}}i_r$-homomorphism on \tilde{G}. Let $\chi_{i_{1_{1}2_{...i}}}i_r$ be the $\rho_{i_{1_{1}2_{...i}}}i_r$-chromatic number of \tilde{G}.

Then $\chi_{i_{1_{1}2_{...i}}}i_r(\tilde{G}) \leq \chi_{i_{1_{1}2_{...i}}}i_r(\epsilon_{i_{1_{1}2_{...i}}}i_r, \tilde{G})$.

Proof. Let $\chi_{i_{1_{1}2_{...i}}}i_r(\epsilon_{i_{1_{1}2_{...i}}}i_r, \tilde{G}) = s$.

Then

$d_{i_{1_{1}2_{...i}}}i_r(C^k_i(\epsilon_{i_{1_{1}2_{...i}}}i_r, u), C^k_i(\epsilon_{i_{1_{1}2_{...i}}}i_r, v)) \geq f_{i_{1_{1}2_{...i}}}i_r(\rho_{i_{1_{1}2_{...i}}}i_r(\epsilon_{i_{1_{1}2_{...i}}}i_r, u, \epsilon_{i_{1_{1}2_{...i}}}i_r, v)), i \in \{i_1, i_2, ..., i_r\}, 1 < r < k$.

If we use the same $\rho_{i_{1_{1}2_{...i}}}i_r$-colouring for \tilde{G}, we have

$d_{i_{1_{1}2_{...i}}}i_r(C^k_i(u), C^k_i(v)) = d_{i_{1_{1}2_{...i}}}i_r(C^k_i(\epsilon_{i_{1_{1}2_{...i}}}i_r, u), C^k_i(\epsilon_{i_{1_{1}2_{...i}}}i_r, v))$

$\geq f_{i_{1_{1}2_{...i}}}i_r(\rho_{i_{1_{1}2_{...i}}}i_r(\epsilon_{i_{1_{1}2_{...i}}}i_r, u, \epsilon_{i_{1_{1}2_{...i}}}i_r, v)), i_1 \leq i \leq i_r, 1 \leq r \leq k$,

$\geq f_{i_{1_{1}2_{...i}}}i_r(\rho_i(u, v))$ since $\epsilon_{i_{1_{1}2_{...i}}}i_r$ is a $\rho_{i_{1_{1}2_{...i}}}i_r$-homomorphism.

Therefore $\chi_{i_{1_{1}2_{...i}}}i_r(\tilde{G}) \leq \chi_{i_{1_{1}2_{...i}}}i_r(\epsilon_{i_{1_{1}2_{...i}}}i_r, \tilde{G})$. \qed

Theorem 8.2.4. Let \tilde{G} be a fuzzy graph structure and ϵ a homomorphism on \tilde{G}. Let χ_i be the ρ_i-chromatic number of \tilde{G} for $i = 1, 2, ..., k$. Then $\chi_i(\tilde{G}) \leq \chi_i(\epsilon, \tilde{G})$ for $i = 1, 2, ..., k$.

Proof. ϵ is a homomorphism on \tilde{G}. Hence it is a ρ_i-homomorphism on \tilde{G} for $i = 1, 2, ..., k$. Hence the result is obvious from Theorem 8.2.2. \qed
8.3 \((d_i, f_i)\)-extended \(\rho_i\)-edge colouring of a fuzzy graph structure

Convention: Throughout this section, unless otherwise specified, we take \(\tilde{G}\) as a fuzzy graph structure \((\mu, \rho_1, \rho_2, ..., \rho_k)\) of a graph structure \(G = (V, R_1, R_2, ..., R_k)\) with \(\mu(v) = 1 \forall v \in V\).

\(\mathcal{G}(d_i, f_i)\)-extended \(\rho_i\)-edge colouring

We define \((d_i, f_i)\)-extended \(\rho_i\)-edge colouring of a fuzzy graph structure in the following way similar to the \((d, f)\)-extended edge coloring of a fuzzy graph defined in [54].

Let \(S_i\) be a colour set. A \(\rho_i\)-dissimilarity measure \(d_i\) defined on \(S_i\) is a function \(d_i : S_i \times S_i \to [0, \infty)\) which satisfies

i. \(d_i(r, s) = 0 \iff r = s \forall (r, s) \in S_i\)

ii. \(d_i(r, s) = d_i(s, r) \forall (r, s) \in S_i\)

Let \(I_i\) be the set of all \(\rho_i\)-membership grades assigned to \(\rho_i\)-edges. Let \(f_i : I_i \to [0, \infty)\) be non decreasing,i.e., \(f_i(a) \leq f_i(a')\forall a, a' \in I_i, a < a'\). \(f_i\) is a \(\rho_i\)-scale function.

Definition 8.3.1. Consider a fuzzy graph structure \(\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k, S_1, S_2, ..., S_k, d_1, d_2, ..., d_k, f_1, f_2, ..., f_k)\). A \((d_i, f_i)\)-extended \(\rho_i\)-colouring function of \(\tilde{G}\), \(C_i^{(d_i, f_i)}\) or \(C_i\) is a mapping \(C_i : R_i \to S_i\) with the properties

i. \(d_i(C_i(r, s), C_i(r, l)) \geq \wedge\{f_i(\rho_i(r, s)), f_i(\rho_i(r, l))\}\) for all \(\rho_i\)-edges \((r, s), (r, l)\)

ii. \(d_i(C_i(r, s), C_i(l, s)) \geq \wedge\{f_i(\rho_i(r, s)), f_i(\rho_i(l, s))\}\) for all \(\rho_i\)-edges \((r, s), (l, s)\).

A \((d_i, f_i)\)-extended \(p_i - \rho_i\)-colouring \(C_i^{p_i}\) is a \((d_i, f_i)\)-extended \(\rho_i\)-colouring function
which takes maximum p_i different colours,

ie., $C^p_i : R_i \rightarrow S_i$ where $S_i = \{1, 2, ..., p_i\}$ which satisfies

i. $d_i(C^p_i(r,s), C^p_i(r,l)) \geq \wedge \{f_i(\rho_i(r,s)), f_i(\rho_i(r,l))\}$ for all ρ_i-edges $(r,s), (r,l)$

ii. $d_i(C^p_i(r,s), C^p_i(l,s)) \geq \wedge \{f_i(\rho_i(r,s)), f_i(\rho_i(l,s))\}$ for all ρ_i-edges $(r,s), (l,s)$

Definition 8.3.2. For a given fuzzy graph structure

$\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k, S_1, S_2, ..., S_k, d_1, d_2, ..., d_k, f_1, f_2, ..., f_k)$, the minimum value of p_i for which a (d_i, f_i)-extended p_i-ρ_i-coloring exists is called the (d_i, f_i)-ρ_i-edge chromatic number of \tilde{G} and is denoted by $\chi^{d_i,f_i}_i(\tilde{G})$.

(d_i, f_i)-extended edge colouring problem consists of determining the (d_i, f_i)-ρ_i-edge chromatic numbers of the fuzzy graph structure and associated (d_i, f_i)-extended ρ_i-edge colouring functions for $i = 1, 2, ..., k$.

$\S(d,f)$-extended edge colouring

Let $\chi^{(d,f)}(\tilde{G}) = (\chi^{(d_1,f_1)}_1, \chi^{(d_2,f_2)}_2, ..., \chi^{(d_k,f_k)}_k)$, $C = (C_1, C_2, ..., C_k)$,

$f = (f_1, f_2, ..., f_k)$. Here $C : V^k \rightarrow S_1 \times S_2 \times ... \times S_k$,

$f : I_1 \times I_2 \times ... \times I_k \rightarrow [0, \infty)^k$. We say that C is a (d,f)-extended edge colouring if

i. $d_i(C_i(r), C_i(s)) \geq \wedge \{f_i(\rho_i(r,s)), f_i(\rho_i(r,l))\}$ for all ρ_i-edges $(r,s), (r,l)$,

and ii. $d_i(C_i(r), C_i(s)) \geq \wedge \{f_i(\rho_i(r,s)), f_i(\rho_i(l,s))\}$ for all ρ_i-edges $(r,s), (l,s)$

for $i = 1, 2, ..., k$.

A (d,f)-extended p-edge colouring C^p is a (d,f)-extended edge colouring function with no more than p different colours.

ie., $C^p : R_1 \times R_2 \times ... \times R_k \rightarrow S_1 \times S_2 \times ... \times S_k$ where $S_i = \{1, 2, ..., p_i\}$.
\(\xi(d_{i_1i_2...i_r}, f_{i_1i_2...i_r}) \)-extended \(\rho_{i_1i_2...i_r} \)-edge colouring

Let \(\{S_1, S_2, \ldots, S_k\} \) be the available colour set with \(S_i \cap S_j = \phi \) for \(i_1 \leq i, j \leq i_r, 1 \leq r \leq k \). A \(\rho_{i_1i_2...i_r} \)-dissimilarity measure \(d_{i_1i_2...i_r} \) defined on \(\bigcup_{i=i_1}^{i_r} S_i \) is a function

\[
d_{i_1i_2...i_r} : \bigcup_{i=i_1}^{i_r} S_i \times \bigcup_{i=i_1}^{i_r} S_i \to [0, \infty)
\]

i. \(d_{i_1i_2...i_r}(r, s) = 0 \iff r = s \)

ii. \(d_{i_1i_2...i_r}(r, s) = d_{i_1i_2...i_r}(s, r) \)

Let \(I_{i_1i_2...i_r} = \bigcup_{i=i_1}^{i_r} I_i \) be the set of all \(\rho_i \)-membership grades, assigned to \(\rho_r \)-edges, \(i = i_1, i_2, \ldots, i_r \). Let \(f_{i_1i_2...i_r} : I_{i_1i_2...i_r} \to [0, \infty) \) be non decreasing.

ie., \(f_{i_1i_2...i_r}(a) \leq f_{i_1i_2...i_r}(a') \forall a, a' \in I_{i_1i_2...i_r} \) such that \(a < a' \). \(f_{i_1i_2...i_r} \) is a \(\rho_{i_1i_2...i_r} \)-scale function.

Definition 8.3.3. Consider a fuzzy graph structure

\(\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_k, S_1, S_2, \ldots, S_k, d_1, d_2, \ldots, d_k, f_1, f_2, \ldots, f_k) \).

A \((d_{i_1i_2...i_r}, f_{i_1i_2...i_r}) \)-extended \(\rho_{i_1i_2...i_r} \)-colouring function of \(\tilde{G} \), \(C_i \) is a mapping

\(C_i : \bigcup_{i=i_1}^{i_r} R_i \to \bigcup_{i=i_1}^{i_r} S_i, i_1 \leq i \leq i_r \) with the properties

i. \(d_{i_1i_2...i_r}(C_i(r, s), C_i(r, l)) \geq \bigwedge \{f_{i_1i_2...i_r}(\rho_i(r, s)), f_{i_1i_2...i_r}(\rho_i(r, l))\} \) for all \(\rho_i \)-edges, \((r, s), (r, l), i_1 \leq i \leq i_r \)

ii. \(d_{i_1i_2...i_r}(C_i(r, s), C_i(l, s)) \geq \bigwedge \{f_{i_1i_2...i_r}(\rho_i(r, s)), f_{i_1i_2...i_r}(\rho_i(l, s))\} \) for all \(\rho_i \)-edges, \((r, s), (l, s), i_1 \leq i \leq i_r \).

A \((d_{i_1i_2...i_r}, f_{i_1i_2...i_r}) \)-extended \(\rho_{i_1i_2...i_r} \)-colouring \(C_{i_1i_2...i_r} \) is a \((d_{i_1i_2...i_r}, f_{i_1i_2...i_r}) \)-extended \(\rho_{i_1i_2...i_r} \)-colouring function which takes maximum \(p_{i_1i_2...i_r} \) different colours,
ie., $C_{\rho_1,\ldots,\rho_r}^{\rho_{i_1} \ldots \rho_{i_r}} : \bigcup_{i=i_1}^{i_r} R_i \rightarrow \bigcup_{i=i_1}^{i_r} S_i$

where $S_i = \{1, 2, \ldots, p_i\}$ which satisfies

i. $d_{i_1i_2 \ldots i_r}(C_{\rho_1 \ldots \rho_r}^{\rho_{i_1} \ldots \rho_{i_r}}(r,s), C_{\rho_1 \ldots \rho_r}^{\rho_{i_1} \ldots \rho_{i_r}}(r,l)) \geq \land \{f_{i_1i_2 \ldots i_r}(\rho_i(r,s)), f_{i_1i_2 \ldots i_r}(\rho_i(r,l))\}$ for all ρ_i-edges, $(r,s), (r,l), i_1 \leq i \leq i_r$

ii. $d_{i_1i_2 \ldots i_r}(C_{\rho_1 \ldots \rho_r}^{\rho_{i_1} \ldots \rho_{i_r}}(r,s), C_{\rho_1 \ldots \rho_r}^{\rho_{i_1} \ldots \rho_{i_r}}(l,s)) \geq \land \{f_{i_1i_2 \ldots i_r}(\rho_i(r,s)), f_{i_1i_2 \ldots i_r}(\rho_i(l,s))\}$ for all ρ_i-edges, $(r,s), (l,s), i_1 \leq i \leq i_r$

Note that we can select r among $\rho_1, \rho_2, \ldots, \rho_k$ in $k(k-1)(k-2)\ldots(k-r+1)$ ways.

So the following result is obvious.

Result 2

There exist $k(k-1)(k-2)\ldots(k-r+1)$ different edge $\rho_{i_1i_2 \ldots i_r}$-colourings for the fuzzy graph structure $\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_k)$.

8.4 Relation colouring of a graph structure and fuzzy graph structure

We introduce a new type of colouring in a graph structure which is quite different from the edge colouring given by Sampathkumar[61].

Definition 8.4.1. Let $G = (V, R_1, R_2, \ldots, R_k)$ be a graph structure. Then $C = \{C_1, C_2, \ldots, C_k\}$ is a relation colouring of G if every $(u,v) \in R_i$ is coloured with colour C_i and $C_i \neq C_j$ if $i \neq j$.

We give the (d, f)-extended relation colouring of a fuzzy graph structure as follows.

Let S be the available colour set of k colours. d is the dissimilarity measure $d : S \times S : [0, \infty)$ with
\[d(r, s) = 0 \text{ iff } r = s \forall r, s \in S \]
\[d(r, s) = d(s, r) \forall r, s \in S. \]

Let \(I \) be the set of all membership grades of \(\tilde{G} \). Let \(f : I \to [0, \infty) \) be non decreasing. This is the scale function.

Definition 8.4.2. A \((d, f)\)-extended relation colouring of a fuzzy graph structure \(\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k) \) of \(G = (V, R_1, R_2, ..., R_k) \) denoted by \(C_R \) is a mapping \(C_R : \{R_1, R_2, ..., R_k\} \to S \) satisfying
\[
\begin{align*}
&i. \ d(C_R(\rho_i)), C_R(\rho_j) \geq \land\{f(\rho_i(r, s)), f(\rho_j(r, l)))\} \forall (r, s) \in \text{supp}(\rho_i), (r, l) \in \text{supp}(\rho_j) \\
&ii. \ d(C_R(\rho_i), C_R(\rho_j)) \geq \land\{f(\rho_i(r, s)), f(\rho_j(l, s)))\} \forall (r, s) \in \text{supp}(\rho_i), (l, s) \in \text{supp}(\rho_j) \\
\end{align*}
\]

8.5 Total colouring of a fuzzy graph structure

Convention: Throughout this section, unless otherwise specified, we take \(\tilde{G} \) as a fuzzy graph structure \((\mu, \rho_1, \rho_2, ..., \rho_k) \) of \(G = (V, R_1, R_2, ..., R_k) \) with \(\mu(v) = 1 \forall v \in V \) of a graph structure \(G = (V, R_1, R_2, ..., R_k) \).

\[(d_i, f_i)\)-extended total \(\rho_i \)-colouring of a fuzzy graph structure

We define \(\rho_i \)-total colouring as follows.

Definition 8.5.1. Let \(\tilde{G} = (\mu, \rho_1, \rho_2, ..., \rho_k, S_1, S_2, ..., S_k, d_1, d_2, ..., d_k, f_1, f_2, ..., f_k) \) be a fuzzy graph structure. A \((d_i, f_i)\)-extended total \(\rho_i \)-colouring of \(\tilde{G} \) denoted by \(C_T^i \) is a mapping from \(V \cup R_i \) to \(S_i \) satisfying
\[
\begin{align*}
&i. \ d_i(C_T^i(r), C_T^i(s)) \geq f_i(\rho_i(r, s)) \forall r, s \in V \\
&ii. \ d_i(C_T^i(r, s), C_T^i(r, l)) \geq \land\{f_i(\rho_i(r, s)), f_i(\rho_i(r, l))\} \\
\text{and } d_i(C_T^i(r, s), C_T^i(l, s)) \geq \land\{f_i(\rho_i(r, s)), f_i(\rho_i(l, s))\} \forall \rho_i \text{-edges } (r, s), (r, l), (l, s)
\end{align*}
\]
iii. \(d_i(C^T_i(r), C^T_i(r, s)) \geq f_i(\rho_i(r, s)) \)
and \(d_i(C^T_i(s), C^T_i(r, s)) \geq f_i(\rho_i(r, s)) \forall \rho_i\)-edges \((r, s)\).

A \((d_i, f_i)\)-extended total \(\rho_i\)-coloring \(C^{TP}_{i \rho_i}\) is a \((d_i, f_i)\)-extended total \(\rho_i\)-coloring function which takes maximum \(p_i\) different colours.

The minimum \(p_i\) for which a \((d_i, f_i)\)-total \(\rho_i\)-coloring exists for a fuzzy graph structure is the \((d_i, f_i)\)-total \(\rho_i\)-chromatic number \(\chi^{T(d_i, f_i)}_{i \rho_i}\).

§ \((d, f)\)-extended total colouring of a fuzzy graph structure

Definition 8.5.2. Let \(\chi^{T(d, f)}_{\tilde{G}} = (\chi^{T(d_1, f_1)}_{1}, \chi^{T(d_2, f_2)}_{2}, ..., \chi^{T(d_k, f_k)}_{k}),\)
\(C^T = (C^T_1, C^T_2, ..., C^T_k), f = (f_1, f_2, ..., f_k).\) Here \(C^T : V^k \rightarrow S_1 \times S_2 \times ... \times S_k,\)
\(f : I_1 \times I_2 \times ... \times I_k \rightarrow [0, \infty)^k.\) \(C^T\) is a \((d, f)\)-extended total colouring if

i. \(d_i(C^T_i(r), C^T_i(s)) \geq f_i(\rho_i(r, s)) \forall r, s \in V \)

and \(d_i(C^T_i(r, s), C^T_i(r, l)) \geq \land \{f_i(\rho_i(r, s)), f_i(\rho_i(r, l))\} \)

ii. \(d_i(C^T_i(r, s), C^T_i(r, l)) \geq \land \{f_i(\rho_i(r, s)), f_i(\rho_i(r, l))\} \forall \rho_i\)-edges \((r, s), (r, l), (l, s)\)

and \(d_i(C^T_i(r, s), C^T_i(r, l)) \geq \land \{f_i(\rho_i(r, s)), f_i(\rho_i(r, l))\} \forall \rho_i\)-edges \((r, s)\)

and \(d_i(C^T_i(r, s), C^T_i(r, l)) \geq \land \{f_i(\rho_i(r, s)), f_i(\rho_i(r, l))\} \forall \rho_i\)-edges \((r, s)\)

for \(i = 1, 2, ..., k.\)

A \((d, f)\)-extended \(p\)-total colouring \(C^p\) of \(\tilde{G}\) is a \((d, f)\)-extended total colouring function which takes maximum \(p\) different colours.

§ \((d_1i_12...i_r, f_1i_12...i_r)\)-extended total \(\rho_{1i_12...i_r}\)-colouring of a fuzzy graph structure

We define \((d_1i_12...i_r, f_1i_12...i_r)\)-total \(\rho_{1i_12...i_r}\)-colouring of a fuzzy graph structure as follows.
Definition 8.5.3. Let $\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_k, S_1, S_2, \ldots, S_k, d_1, d_2, \ldots, d_k, f_1, f_2, \ldots, f_k)$ be a fuzzy graph structure. A $(d_{i_1 i_2 \ldots i_r}, f_{i_1 i_2 \ldots i_r})$-extended total $\rho_{i_1 i_2 \ldots i_r}$-colouring of \tilde{G} denoted by C^T_i is a mapping from $V \cup \bigcup_{i=i_1}^{i_r} R_i$ to $\bigcup_{i=i_1}^{i_r} S_i, S_i \cap S_j = \emptyset; i_1 \leq i, j \leq i_r$ satisfying

i. $d_{i_1 i_2 \ldots i_r} (C^T_i(r), C^T_i(s)) \geq f_{i_1 i_2 \ldots i_r}(\rho_i(r, s)) \forall r, s \in V, (\rho_i > 0)$

ii. $d_{i_1 i_2 \ldots i_r}(C^T_i(r, s), C^T_i(r, l)) \geq \wedge \{f_{i_1 i_2 \ldots i_r}(\rho_i(r, s)), f_{i_1 i_2 \ldots i_r}(\rho_i(r, l))\}$

and $d_{i_1 i_2 \ldots i_r}(C^T_i(r, s), C^T_i(l, s)) \geq \wedge \{f_{i_1 i_2 \ldots i_r}(\rho_i(r, s)), f_{i_1 i_2 \ldots i_r}(\rho_i(l, s))\}$

$\forall \rho_i$-edges $(\rho_i > 0), (r, s), (r, l), (l, s), i_1 \leq i \leq i_r, 1 < r < k$

iii. $d_{i_1 i_2 \ldots i_r}(C^T_i(r), C^T_i(r, s)) \geq f_{i_1 i_2 \ldots i_r}(\rho_i(r, s))$

and $d_{i_1 i_2 \ldots i_r}(C^T_i(s), C^T_i(r, s)) \geq f_{i_1 i_2 \ldots i_r}(\rho_i(r, s)) \forall \rho_i$-edges $(\rho_i > 0), (r, s) \in \bigcup_{i=i_1}^{i_r} R_i$.

A $(d_{i_1 i_2 \ldots i_r}, f_{i_1 i_2 \ldots i_r})$-extended total $\rho_{i_1 i_2 \ldots i_r}$-coloring exists for a fuzzy graph structure \tilde{G} if and only if the $(d_{i_1 i_2 \ldots i_r}, f_{i_1 i_2 \ldots i_r})$-total $\rho_{i_1 i_2 \ldots i_r}$-chromatic number $\chi^{T(d_{i_1 i_2 \ldots i_r}, f_{i_1 i_2 \ldots i_r})}$.

Note that we can select r among $\rho_1, \rho_2, \ldots, \rho_k$ in $k(k-1)(k-2)\ldots(k-r+1)$ ways. So the following result is obvious.

Result 3

There exist $k(k-1)(k-2)\ldots(k-r+1)$ different total $\rho_{i_1 i_2 \ldots i_r}$-colourings for a fuzzy graph structure $\tilde{G} = (\mu, \rho_1, \rho_2, \ldots, \rho_k)$ of $G = (V, R_1, R_2, \ldots, R_k)$.
8.6 Some results on total colouring of a fuzzy graph structure

In this section, we extend the results in vertex colouring to total colouring also.

Convention: Throughout this section, unless otherwise specified, we take \(\tilde{G} \) as a fuzzy graph structure \((\mu, \rho_1, \rho_2, ..., \rho_k)\) with \(\mu(v) = 1 \forall v \in V \) of a graph structure \(G = (V, R_1, R_2, ..., R_k) \).

Theorem 8.6.1. Let \(\epsilon_i \) be a \(\rho_i \)-homomorphism on \(\tilde{G} \). Let \(\chi^T_i \) be the \((d_i, f_i)\)-extended total \(\rho_i \)-chromatic number of \(\tilde{G} \). Then \(\chi^T_i(\tilde{G}) \leq \chi^T_i(\epsilon_i, \tilde{G}) \).

Proof. Let \(\chi^T_i(\epsilon_i, \tilde{G}) = n \).

Then

i. \(d_i(C^T_i(r), C^T_i(s)) \geq f_i(\rho_i(r, s)) \forall r, s \in V \)

ii. \(d_i(C^T_i(r, s), C^T_i(r, l)) \geq \land \{f_i(\rho_i(r, s)), f_i(\rho_i(r, l))\} \)

and \(d_i(C^T_i(r, s), C^T_i(l, s)) \geq \land \{f_i(\rho_i(r, s)), f_i(\rho_i(l, s))\} \forall \rho_i\)-edges, \((r, s), (r, l), (l, s)\)

iii. \(d_i(C^T_i(r), C^T_i(r, s)) \geq f_i(\rho_i(r, s)) \)

and \(d_i(C^T_i(s), C^T_i(r, s)) \geq f_i(\rho_i(r, s)) \forall \rho_i\)-edges \((r, s)\).

If we use the same \(\rho_i \)-colouring for \(\tilde{G} \), we have

i. \(d_i(C^T_i(u), C^T_i(v)) = d_i(C^T_i(\epsilon_i u), C^T_i(\epsilon_i v)) \geq f_i(\rho_i(\epsilon_i u, \epsilon_i v)) \geq f_i(\rho_i(u, v)) \) since \(\epsilon_i \) is a \(\rho_i \)-homomorphism.

ii. \(d_i(C^T_i(u), C^T_i(u, v)) = d_i(C^T_i(\epsilon u), C^T_i(\epsilon u, \epsilon v)) \geq f_i(\rho_i(\epsilon u, \epsilon v)) \geq f_i(\rho_i(u, v)) \)

and \(d_i(C^T_i(v), C^T_i(u, v)) = d_i(C^T_i(\epsilon v), C^T_i(\epsilon u, \epsilon v)) \)
Let ϵ_i be a ρ_i-homomorphism.

Therefore $\chi_i^T(\tilde{G}) \leq \chi_i^T(\epsilon_i \tilde{G})$.

\begin{flushright}
\Box
\end{flushright}

Theorem 8.6.2. Let $\epsilon_{i_1i_2...i_r}$ a $\rho_{i_1i_2...i_r}$-homomorphism on \tilde{G}. Let $\chi_{i_1i_2...i_r}$ be the $\rho_{i_1i_2...i_r}$-chromatic number of \tilde{G}. Then $\chi_{i_1i_2...i_r}(\tilde{G}) \leq \chi_{i_1i_2...i_r}(\epsilon_{i_1i_2...i_r} \tilde{G})$

Proof. Let $\chi_{i_1i_2...i_r}(\epsilon_{i_1i_2...i_r} \tilde{G}) = n$.

Then

1. $d_{i_1i_2...i_r}(C_i^{Tn}(\epsilon_{i_1i_2...i_r} u), C_i^{Tn}(\epsilon_{i_1i_2...i_r} v)) \geq f_{i_1i_2...i_r}(\rho_i(\epsilon_{i_1i_2...i_r} u, \epsilon_{i_1i_2...i_r} v))$

2. $d_{i_1i_2...i_r}(C_i^{Tn}(u), C_i^{Tn}(v)) \geq \land \{f_{i_1i_2...i_r}(\rho_i(u, v)), d_{i_1i_2...i_r}(\rho_i(l, v)))

3. $d_{i_1i_2...i_r}(C_i^{Tn}(u), C_i^{Tn}(v)) \geq f_{i_1i_2...i_r}(\rho_i(u, v))$

If we use the same $\rho_{i_1i_2...i_r}$-colouring for \tilde{G}, we have

1. $d_{i_1i_2...i_r}(C_i^{Tn}(u), C_i^{Tn}(v)) = d_{i_1i_2...i_r}(C_i^{Tn}(\epsilon_{i_1i_2...i_r} u), C_i^{Tn}(\epsilon_{i_1i_2...i_r} v))$

2. $d_{i_1i_2...i_r}(C_i^{T(n+1)}(u), C_i^{T(n+1)}(v))$

Since $\epsilon_{i_1i_2...i_r}$ is a $\rho_{i_1i_2...i_r}$-homomorphism.
for $i \in \{i_1, i_2, ..., i_r\}, 1 < r < k$.

Therefore $\chi_{i_1i_2...i_r}(\tilde{G}) \leq \chi_{i_1i_2...i_r}(\epsilon_{i_1i_2...i_r} \tilde{G})$.

\begin{theorem}
Let ϵ be a homomorphism on \tilde{G}. Let χ_i^T be the (d, f)-extended total ρ_i-chromatic number of \tilde{G} for $i = 1, 2, ..., k$. Then $\chi_i^T(\tilde{G}) \leq \chi_i^T(\epsilon \tilde{G})$ for $i = 1, 2, ..., k$.
\end{theorem}

\begin{proof}
ϵ is a homomorphism on \tilde{G}. Hence it is a ρ_i-homomorphism on \tilde{G} for $i = 1, 2, ..., k$. Hence the result is obvious from Theorem 8.6.1.
\end{proof}