CONTENTS

1. INTRODUCTION 1
 1.1 THE ATMOSPHERIC ELECTRICAL CIRCUIT 1
 1.1.1 The spherical capacitor theory 3
 1.2 ION PRODUCTION IN THE ATMOSPHERE 9
 1.2.1 Sources of ionization 9
 1.2.2 Ionization due to radioactivity 11
 1.2.3 Formation and recombination of ions 14
 1.2.4 Effect of aerosols 16
 1.3 DIURNAL AND SEASONAL VARIATIONS 19
 1.3.1 Temporal variation of conductivity 20
 1.3.2 Temporal variation of the vertical electric field 22
 1.4 RADIOACTIVITY IN THE ATMOSPHERE 27
 1.4.1 Radioactivity at the surface and in the atmosphere 27
 1.4.2 Studies on relationship between radioactivity and atmospheric electricity 31
 1.5 PRESENT STUDY 34
2. INSTRUMENTATION 35
 2.1 INTRODUCTION 35
 2.2 THE GERDIEN CONDENSER 36
 2.2.1 Theory 37
 2.2.2 Sources of error 43
 2.2.3 The Gerdiien sensor 47
 2.2.4 The ground-based instrument 48
2.3 THE FIELD MILL
 2.3.1 Theory
 2.3.2 The sensor
 2.3.3 The electronics

2.4 THE SYSTEM CONSOLE

3. THE EXPERIMENTS
 3.1 INTRODUCTION
 3.1.1 The study region

3.2 MEASUREMENTS AT THE SURFACE
 3.2.1 Monitoring sites
 3.2.2 Operation and maintenance
 3.2.3 Data reduction and analysis

3.3 JEEP-BORNE AND AIR-BORNE SURVEYS

4. CONDUCTIVITY VARIATIONS AT THE SURFACE
 4.1 INTRODUCTION
 4.2 DIURNAL VARIATION OF POLAR CONDUCTIVITIES
 4.3 EFFECT OF SURFACE RADIOACTIVITY ON CONDUCTIVITIES
 4.4 DIURNAL VARIATION OF CONDUCTIVITY AT A RADIOACTIVE SITE
 4.5 EFFECT OF RAINFALL ON CONDUCTIVITY
 4.5.1 Effect of pre-monsoon rainfall
 4.5.2 Effect of monsoon rainfall
 4.6 DIFFERENCE BETWEEN COASTAL AND INLAND SITES
 4.7 DIURNAL VARIATION OF CONDUCTIVITY - TOWARDS AN ALTERNATIVE EXPLANATION
 4.7.1 Need for an alternative explanation
 4.7.2 Harmonic analysis of conductivity
 4.7.3 Towards an alternative explanation