CHAPTER 3

GORENSTEIN n-FLAT MODULES AND THEIR COVERS

3.1 Introduction

Enochs et al. [18] first introduced and studied Gorenstein flat modules over Gorenstein rings (that is, noetherian rings with finite self-injective dimension). One of the most interesting results is that over a right coherent ring the class of Gorenstein flat left modules and its right orthogonal class form a complete hereditary cotorsion pair, which is due to Enochs, Jenda and López-Ramos [17]. Since the class of Gorenstein flat modules over a right coherent ring is closed under direct limits, one can get further that all left modules over a right coherent ring have Gorenstein flat covers. The existence of Gorenstein flat covers was first proved for modules over Gorenstein rings in [21].

Recently, in [24] Gang et al. proved all modules over a left GF-closed ring have Gorenstein flat covers. We proved all modules have n-flat covers.
in Chapter 2. These motivate us to introduce the notion of Gorenstein \(n \)-flat module and its cover. In this chapter, we show that all left \(R \)-modules over right \(n \)-coherent ring have Gorenstein \(n \)-flat covers. This chapter is organized as follows. In Section 3.3, we prove that over a right \(n \)-coherent ring, every direct limit of Gorenstein \(n \)-flat modules is again Gorenstein \(n \)-flat module. Also, we introduce the notion of Gorenstein \(n \)-absolutely pure right \(R \)-modules and study the relation between them and we show that over a right \(n \)-coherent ring, any pure submodule of a Gorenstein \(n \)-flat module is Gorenstein \(n \)-flat. In Section 3.4, we prove given a ring \(R \), the class of all Gorenstein \(n \)-flat left \(R \)-modules is a Kaplansky class and also we prove that all modules over a right \(n \)-coherent ring have Gorenstein \(n \)-flat covers and show that over a right \(n \)-coherent ring, Gorenstein \(n \)-flat cover of \(M \) is an \(n \)-flat cover of \(M \).

3.2 Gorenstein \(n \)-flat modules

First, we introduce the definition of Gorenstein \(n \)-flat module as follows:

Definition 3.2.1. A left \(R \)-module \(M \) is said to be Gorenstein \(n \)-flat, if there exists an exact sequence of \(n \)-flat left \(R \)-modules,

\[
\cdots \to F_1 \to F_0 \to F^0 \to F^1 \to \cdots
\]

such that \(M \cong \text{Im}(F_0 \to F^0) \) and such that \(E \otimes - \) leaves the sequence exact whenever \(E \) is an \(n \)-absolutely pure right \(R \)-module. The class of all Gorenstein \(n \)-flat left \(R \)-modules is denoted by \(GF_n(R) \).

Example 3.2.2. (i) Any \(n \)-flat module is Gorenstein \(n \)-flat because there is an exact complex

\[
X = \cdots \to 0 \to F \xrightarrow{id} F \to 0 \to 0 \to \cdots
\]
with F being n-flat and such that for every n-absolutely pure module E, the complex

$$E \otimes X = 0 \longrightarrow E \otimes F = E \otimes F \longrightarrow 0$$

is exact.

(ii) In general, Gorenstein n-flat module need not be Gorenstein flat. For example, let R be commutative domain and let M be a Gorenstein 1-flat module. Then, by the definition of Gorenstein 1-flat module there exists an exact sequence of 1-flat left R-modules,

$$\cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots$$

such that $M \cong \text{Im}(F_0 \rightarrow F^0)$ and such that $E \otimes -$ leaves the sequence exact whenever E is a 1-absolutely pure right R-module. We know that 1-flat modules are exactly torsion free by Lemma 1.0.4 and not every torsion free module is flat. Further, 1-absolutely pure right R-modules are divisible by Lemma 1.0.5 and divisible modules need not be injective. Therefore, M need not be Gorenstein flat. But however it is true when R is a PID.

Proposition 3.2.3. If $(M_i)_{i \in I}$ is a family of Gorenstein n-flat modules, then $\bigoplus M_i$ is a Gorenstein n-flat module.

Proof. Since direct sum of n-flat modules is n-flat and tensor products commute with direct sum, the result follows. \Box

Lemma 3.2.4. Let M be a Gorenstein n-flat left R-module. Then, $\text{Tor}_i(E, M) = 0$ for all n-absolutely pure right R-modules E and all $i \geq 1$. The converse is true when R is right n-coherent.
Proof. By hypothesis, there is a $E \otimes -$ exact exact sequence $\cdots \to F_1 \to F_0 \to M \to 0$ with each F^i an n-flat module. Thus, $\text{Tor}_i(E, M) = 0$ for all n-absolutely pure right R-modules E and all $i \geq 1$ by definition. The converse follows from Theorem 1.0.37.

By Lemma 3.2.4, we immediately have the following result:

Corollary 3.2.5. Suppose R is a right n-coherent ring and $0 \to A \to B \to C \to 0$ an exact sequence of left R-modules. Then, if A and C are Gorenstein n-flat, so is B. If B and C are Gorenstein n-flat, so is A. If A and B are Gorenstein n-flat, then C is Gorenstein n-flat if and only if $0 \to E \otimes A \to E \otimes B$ is exact for any n-absolutely pure right module E.

Lemma 3.2.6. Let R be a right n-coherent ring. Then, the following are equivalent:

(i) M is a Gorenstein n-flat R-module.

(ii) There exists an exact sequence $\mathcal{F} = 0 \to M \to F^0 \to F^1 \to \cdots$ with each F^i n-flat such that $E \otimes \mathcal{F}$ leaves the sequence exact for any n-absolutely pure right module E.

Proof. $(i) \Rightarrow (ii)$. Clear from the definition of Gorenstein n-flat R-module.

$(ii) \Rightarrow (i)$. Follows from Lemma 1.0.22.

Next, we give an important result about direct limits.

Theorem 3.2.7. If R is right n-coherent and if $M_0 \to M_1 \to M_2 \to \cdots$ is a sequence of Gorenstein n-flat modules, then the direct limit $\varinjlim M_m$ is again Gorenstein n-flat.
Proof. For each integer m, consider the right n-flat resolution F_m of M_m as follows:

\[
\begin{array}{cccccc}
F_0 & \rightarrow & 0 & \rightarrow & M_0 & \rightarrow & F_0^0 & \rightarrow & F_1^1 & \rightarrow & F_0^2 & \rightarrow & \cdots \\
\downarrow & & \\
F_1 & \rightarrow & 0 & \rightarrow & M_1 & \rightarrow & F_1^0 & \rightarrow & F_1^1 & \rightarrow & F_1^2 & \rightarrow & \cdots \\
\downarrow & & \\
\vdots & & \\
\end{array}
\]

For each map $M_m \rightarrow M_{m+1}$ can be lifted to a chain map $F_m \rightarrow F_{m+1}$ of complexes. Since we are dealing with sequences (and not arbitrary direct systems), each column in the diagram is again a direct system. Thus, it makes sense to apply the exact functor \varprojlim to the above diagram, and doing so, we obtain an exact complex,

\[
F = \varprojlim F_m = 0 \rightarrow \varprojlim M_m \rightarrow \varprojlim F_m^0 \rightarrow \varprojlim F_m^1 \rightarrow \cdots ,
\]

where each module $F^k = \varprojlim F_m^k$, $k = 0, 1, 2, \ldots$ is an n-flat module. Note that when E is an n-absolutely pure right R-module, then by Lemma 3.2.6, $E \otimes F_m$ is exact since $E^+ = \text{Hom}_\mathbb{Z}(E, \mathbb{Q}/\mathbb{Z})$ is an n-flat left R-module. Since \varprojlim commutes with the homology functor, we also get exactness of

\[
E \otimes F \cong \varprojlim (E \otimes F_m).
\]

Thus, we have constructed the “right half", F, of a complete n-flat resolution for $\varprojlim M_m$. Since M_m is Gorenstein n-flat, we also have

\[
\text{Tor}_i(E, \varprojlim M_m) \cong \varprojlim \text{Tor}_i(E, M_m) = 0
\]

for $i > 0$, and all n-absolutely pure right modules E. Thus $\varprojlim M_m$ is Gorenstein n-flat. \qed
Next, we introduce the notion of Gorenstein n-absolutely pure module as follows.

Definition 3.2.8. A right R-module M is said to be Gorenstein n-absolutely pure, if there exists an exact sequence of n-absolutely pure right R-modules
\[\cdots \to A_1 \to A_0 \to A^0 \to A^1 \to \cdots \]
such that $M \cong \text{Im}(A_0 \to A^0)$ and such that $\text{Hom}(E, -)$ leaves the sequence exact whenever E is an n-absolutely pure right R-module.

Remark 3.2.9. (i) The class of Gorenstein n-absolutely pure right R-modules is closed under direct products by definition.

(ii) Clearly, M is a Gorenstein n-flat left R-module if and only if the character module M^+ is a Gorenstein n-absolutely pure right R-module.

(iii) Let R be commutative and n-coherent ring. If M is a Gorenstein n-absolutely pure right R-module, then the character module M^+ is a Gorenstein n-flat left R-module.

Lemma 3.2.10. Let M be a Gorenstein n-absolutely pure right R-module. Then, $\text{Ext}^i(E, M) = 0$ for all n-absolutely pure right R-modules E and all $i \geq 1$. The converse is true when R is right n-coherent.

Proof. By hypothesis, there is a $\text{Hom}(E, -)$ exact exact sequence $0 \to M \to A^0 \to A^1 \to \cdots$ with each A^i is n-absolutely pure. Thus, $\text{Ext}^i(E, M) = 0$ for all n-absolutely pure right R-modules E and all $i \geq 1$ by definition. The converse follows from Theorem 1.0.48. \qed

Corollary 3.2.11. Let R be a right n-coherent ring and $0 \to M_1 \to M_2 \to M_3 \to 0$ an exact sequence of right R-modules. Then:
(i) If M_1 and M_3 are Gorenstein n-absolutely pure, so is M_2.

(ii) If M_1 and M_2 are Gorenstein n-absolutely pure, so is M_3.

(iii) If M_2 and M_3 are Gorenstein n-absolutely pure, then M_1 is Gorenstein n-absolutely pure if and only if $\text{Ext}^1(E, M_1) = 0$ for all n-absolutely pure right R-modules E.

Thus, the class of Gorenstein n-absolutely pure right R-modules is closed under direct summands.

Proof: (i), (ii) and (iii) follows from Lemma 3.2.10. The last statement holds by (i), (ii), Remark 3.2.9 (i) and Proposition 1.0.24.

We are now going to give a connection between Gorenstein n-flat modules and Gorenstein n-absolutely pure modules.

Theorem 3.2.12. Let R be right n-coherent then the following statements are equivalent:

(i) M is a Gorenstein n-flat left R-module.

(ii) There is a $E \otimes -$ exact exact sequence $\cdots \to F_1 \to F_0 \to F^0 \to F^1 \to \cdots$ of n-flat left R-modules such that $M = \text{Ker}(F^0 \to F^1)$ where E is any n-absolutely pure right R-module.

(iii) M^+ is a Gorenstein n-absolutely pure right R-module.

Proof: (i) \Rightarrow (ii). Clear from the definition of a Gorenstein n-flat module.

(ii) \Rightarrow (iii). Follows from Remark 3.2.9 (ii).

(iii) \Rightarrow (i). Follows from Theorem 1.0.37 since M^+ is a Gorenstein n-absolutely pure R-module.
Corollary 3.2.13. Assume that R is right n-coherent, and consider a short exact sequence of left R-modules $0 \to G' \to G \to M \to 0$, where G and G' are Gorenstein n-flat modules. If $\text{Tor}_1(E, M) = 0$ for all n-absolutely pure right R-modules E, then M is Gorenstein n-flat.

Proof. Define $G^+ = \text{Hom}_\mathbb{Z}(G, \mathbb{Q}/\mathbb{Z})$ and $G'^+ = \text{Hom}_\mathbb{Z}(G', \mathbb{Q}/\mathbb{Z})$ which are Gorenstein n-absolutely pure module by Theorem 3.2.12. Apply $\text{Hom}_\mathbb{Z}(\cdot, \mathbb{Q}/\mathbb{Z})$ to the exact sequence $0 \to G' \to G \to M \to 0$, we have an exact sequence

$$0 \to M^+ \to G^+ \to G'^+ \to 0$$

and noting that we have an isomorphism,

$$\text{Ext}^1(E, \text{Hom}_\mathbb{Z}(M, \mathbb{Q}/\mathbb{Z})) \cong \text{Hom}_\mathbb{Z}(\text{Tor}_1(E, M), \mathbb{Q}/\mathbb{Z}) = 0$$

for all n-absolutely pure right R-modules E. Therefore, M^+ is Gorenstein n-absolutely pure. Since R is right n-coherent, we conclude that M is Gorenstein n-flat by Theorem 3.2.12. \qed

Corollary 3.2.14. Let R be commutative and n-coherent. Then, the following are equivalent:

(i) Every Gorenstein n-flat left R-module is n-flat.

(ii) Every Gorenstein n-absolutely pure right R-module is n-absolutely pure.

Proof. (i) \Rightarrow (ii). Let M be a Gorenstein n-absolutely pure right R-module. Then, M^+ is a Gorenstein n-flat left R-module by Remark 3.2.9 (iii). So M^+ is n-flat by (i). Thus, M is n-absolutely pure by Theorem 1.0.10.
Let M be a Gorenstein n-flat left R-module. Then, M^+ is a Gorenstein n-absolutely pure right R-module by Theorem 3.2.12 and so M^+ is n-absolutely pure by (ii). Thus, M is n-flat.

Next, we show that any pure submodule of a Gorenstein n-flat left R-module is a Gorenstein n-flat over a right n-coherent ring.

Lemma 3.2.15. Let R be a right n-coherent ring. Then, any pure submodule of a Gorenstein n-flat left R-module is a Gorenstein n-flat.

Proof. Let N be a pure submodule of a Gorenstein n-flat left R-module M. Then, the pure exact sequence $0 \to N \to M \to M/N \to 0$ induces a split exact sequence $0 \to (M/N)^+ \to M^+ \to N^+ \to 0$. So N^+ is Gorenstein n-absolutely pure by Corollary 3.2.11 since M^+ is Gorenstein n-absolutely pure by Theorem 3.2.12. Thus, N is Gorenstein n-flat by Theorem 3.2.12 again.

Proposition 3.2.16. Let R be a commutative and n-coherent ring. Then,

(i) M is a Gorenstein n-flat left R-module if and only if M^{++} is Gorenstein n-flat.

(ii) M is a Gorenstein n-absolutely pure right R-module if and only if M^{++} is Gorenstein n-absolutely pure.

Proof. It follows from Remark 3.2.9 (ii) and (iii).

3.3 Gorenstein n-flat covers

The aim of this section is to prove the existence of Gorenstein n-flat covers for every module over right n-coherent ring.

The following result is due to Proposition 1.0.14.
Proposition 3.3.1. Let \mathcal{X} be a class of modules. In addition, suppose \mathcal{X} is closed under direct limits. Then, for a left R-module M, the existence of an \mathcal{X}-precover of M implies the existence of an \mathcal{X}-cover.

By Theorem 3.2.7 and Proposition 3.3.1, in order to find Gorenstein n-flat cover for a module M, we only need to find Gorenstein n-flat precover of M. Next, we see the definition of Gorenstein n-cotorsion module as follows:

Definition 3.3.2. A left R-module L is called Gorenstein n-cotorsion if $\Ext^1(G, L) = 0$ for all Gorenstein n-flat left R-modules G.

Enochs and López-Ramos proved that the class of Gorenstein injective left modules over a left noetherian ring is a Kaplansky class by Proposition 1.0.36. Now, we prove the following proposition by using the same technique as in Proposition 1.0.36.

Proposition 3.3.3. Given a ring R, the class of all Gorenstein n-flat left R-modules is a Kaplansky class.

Proof. Let $M \in \mathcal{GF}_n$ and $x \in M$. We want to show that there is a Gorenstein n-flat submodule S of M containing x such that S and M/S are Gorenstein n-flat.

We first recall that $M \in \mathcal{GF}_n$ means that there exist an exact sequence

$$
\cdots \to F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{f} M \to 0,
$$

where every F_i's are n-flat left R-module and such that $M = \text{Im}(F_0 \to F^0)$ and remains exact whenever $E \otimes -$ is applied for any n-absolutely pure right R-module E. Now since $F_0 \to M$ is surjective, there is $y \in F_0$ such that $f(y) = x$. Then, consider $\langle y \rangle \to F_0$ the inclusion and we have by Lemma
1.0.29, there is a cardinal \(N_0 \) and a pure submodule \(S_0 \subseteq F_0 \) such that \(\langle y \rangle \subseteq S_0 \) and \(\text{Card}(S_0) \leq N_0 \). Now, consider \(S_0 \cap \text{Ker}(f) \subseteq M \). Then, there exists \(D_1 \subseteq F_1 \) such that \(d_1(D_1) = S_0 \cap \text{Ker}(f) \). Again by Lemma 1.0.29, there is a pure submodule \(S_1 \) in \(F_1 \) and a cardinal \(N_1 \) such that \(D_1 \subseteq S_1 \) and \(\text{Card}(S_1) \leq N_1 \). Now, consider \(d_1(S_1) \subseteq F_0 \). Then, there exist a pure submodule \(S_2 \) in \(F_0 \) and a cardinal \(N_2 \) such that \(d_1(S_1) \subseteq S_2 \) and \(\text{Card}(S_2) \leq N_2 \). We now consider \(f(S_2) \) and \(S_2 \cap \text{Ker}(f) \subseteq F_0 \), then there exists \(D_2 \subseteq F_1 \) such that \(d_1(D_2) = S_2 \cap \text{Ker}(f) \). By Lemma 1.0.29, there is a pure submodule \(S_3 \) in \(F_1 \) and a cardinal \(N_3 \) such that \(D_2 \subseteq S_3 \) and \(\text{Card}(S_3) \leq N_0 \).

Now, start the process again going back by considering \(S_2 \cap \text{Ker}(f) \) and proceeding as before, going \(n \) steps forward, going back \(n + 1 \) steps and \(n + 1 \) forward again. Then, we take the union of all complexes constructed in the "zag-zig" process

\[
S^* = \cdots \rightarrow S_1 \rightarrow S_0 \rightarrow S \rightarrow 0,
\]

where \(S = f(S_0) \subseteq M \), which contains the element \(x \) and that by the construction, there exists a cardinal \(N \) such that \(\text{Card}(S) \leq N \). The previous complex is exact by its construction and it is formed by \(n \)-flat modules since all of them are pure submodules of \(n \)-flat modules.

Our aim is to construct \(S \subseteq M \) with an exact sequence as before and such that it remains exact when \(E \otimes - \) is applied to it for every \(n \)-absolutely module \(E \). By Corollary 1.0.21 every \(n \)-absolutely pure module \(E \) may be expressed as the direct limit of a family of \(n \)-absolutely pure submodules. Then, we consider the module \(I = \bigoplus E_i \). Now, if a sequence is such that \(I \otimes - \) leaves it exact, by the commutativity of the tensor products with direct sums, we get that \(E_i \otimes - \) will also leave the sequence exact and from the commutativity of direct limits.
and the tensor products our sequence will remain exact under $E \otimes -$ for every n-absolutely pure module E. Let us consider the complex

$$
\cdots \xrightarrow{d_1} I \otimes S_1 \xrightarrow{d_2} I \otimes S_0 \xrightarrow{f'} I \otimes S \to 0.
$$

This complex is a subcomplex of

$$
\cdots \xrightarrow{d_1} I \otimes F_1 \xrightarrow{d_2} I \otimes F_0 \xrightarrow{f} I \otimes M \to 0,
$$

which is exact since $M \in \mathcal{GF}_n$ and I is a direct sum of n-absolutely pure modules. Suppose without lost of generality that $\text{Ker}(f') \neq \text{Im}(d_1')$, then there is a pure submodule S_1' of F_1 and a cardinal N_1 such that $S_1 \subseteq S_1'$, $\text{Ker}(f') \subseteq \text{Im}(d_1|_{I \otimes S_1'})$ and $\text{Card}(S_1') \leq N_1$. Now, let S' be the image of S_1' under the morphism $F_1 \to F_0$, and let S_0' be a pure submodule of F_0 and N_2 be a cardinal such that $S' \subseteq S_0'$, $\text{Im}(d_1|_{I \otimes S_1'}) \subseteq I \otimes S_0'$, and $\text{Card}(S_0') \leq N_2$. Then, let S' be the image of S_0' under the morphism $F_0 \to M$. Then, we go back again and start another “zig-zag” process with $\text{Ker}(f|_{I \otimes S_0'})$ and $\text{Im}(d_1|_{I \otimes S_1'})$.

Now, take the union of these complexes formed in the “zig-zag” process above to get a complex

$$
T^* = \cdots \to T_1 \to T_0 \to T \to 0.
$$

By the construction above, there is a cardinal N such that $\text{Card}(T) \leq N$ and when $E \otimes -$ is applied to the complex T^* we get an exact complex. But T^* may not be exact. So, we apply again the “zig-zag” process, we used to get S^* to get another exact sequence S^{**} which may not remain exact when $E \otimes -$ is applied. So again we apply the “zig-zag” process, we used to get T^* to the exact sequence S^{**} to get a new T^{**} that may not be exact but remains exact when $E \otimes -$ is applied to it. The “limit” over these two procedures gives us a module S, a cardinal N, and a complex S^* as we desired.
Finally, note that M/S is also in \mathcal{GF}_n since the quotient complex F^*/S^* is exact and it remains exact when $E \otimes -$ is applied to it since F^* and S^* satisfy the two conditions.

We are now in a position to give the main result of this section, which extends Theorem 1.0.39.

Theorem 3.3.4. Let R be a right n-coherent ring. Then, $(\mathcal{GF}_n, \mathcal{GF}_n^\perp)$ is a hereditary perfect cotorsion theory.

Proof. By Theorems 3.2.7, 1.0.31, and Proposition 3.3.3, we get that $(\mathcal{GF}_n, \mathcal{GF}_n^\perp)$ is a perfect cotorsion theory. Since the class of Gorenstein n-flat modules is projectively resolving by Corollary 3.2.5, then we get that $(\mathcal{GF}_n, \mathcal{GF}_n^\perp)$ is hereditary.

By Theorem 3.3.4, we immediately have the following results.

Corollary 3.3.5. All left modules over a right n-coherent ring have Gorenstein n-flat covers.

Corollary 3.3.6. If R is right n-coherent, then every module has Gorenstein n-cotorsion envelope.

Lemma 3.3.7. If

$$0 \to U \to F \xrightarrow{\phi} M \to 0$$

is an exact sequence of left R-modules with U Gorenstein n-cotorsion and F Gorenstein n-flat then $F \to M$ is a Gorenstein n-flat precover of M. Conversely, if ϕ is a Gorenstein n-flat cover of M then, $\text{Ker}\phi$ is Gorenstein n-cotorsion.
3.3. GORENSTEIN n-FLAT COVERS

Proof. Let $F' \in \mathcal{GF}_n$, we shall prove that $\text{Hom}(F', F) \rightarrow \text{Hom}(F', M) \rightarrow 0$ is exact. Applying $\text{Hom}(F', -)$ in the exact sequence, we have $\text{Hom}(F', F) \rightarrow \text{Hom}(F', M) \rightarrow \text{Ext}^1(F', U) = 0$ is exact, since U is Gorenstein n-cotorsion. Hence, M has a Gorenstein n-flat precover. Conversely, if $\phi : F \rightarrow M$ is a Gorenstein n-flat precover of M then, $\text{Ker} \phi$ is Gorenstein n-cotorsion by Lemma 1.0.15.

Lemma 3.3.8. Let R be right n-coherent ring. Then, every n-cotorsion module is Gorenstein n-cotorsion.

Proof. It follows from Lemma 1.0.40.

Proposition 3.3.9. Let R be a right n-coherent ring and M an R-module then, any Gorenstein n-flat cover of M is an n-flat cover of M.

Proof. By Corollary 3.3.5, M has Gorenstein n-flat covers. Let $g : G \rightarrow M$ be a Gorenstein n-flat cover and $f : F \rightarrow M$ be an n-flat cover of M. Then, we have the short exact sequences $0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0$ and $0 \rightarrow C \rightarrow F \rightarrow M \rightarrow 0$, where $K = \text{Ker} g$ and $C = \text{Ker} f$. By Lemma 3.3.7, K is Gorenstein n-cotorsion and C is n-cotorsion by Proposition 2.2.5. So C is also Gorenstein n-cotorsion by Lemma 3.3.8. Thus, the sequence $0 \rightarrow \text{Hom}(G, C) \rightarrow \text{Hom}(G, F) \rightarrow \text{Hom}(G, M) \rightarrow 0$ is exact, this implies that there exists a homomorphism $\alpha : G \rightarrow F$ such that $g = f\alpha$.

On the other hand, there exists a homomorphism $\beta : F \rightarrow G$ such that $f = f\beta$ since $g : G \rightarrow M$ is a Gorenstein n-flat cover of M. Therefore, by the definition of covers, $\beta\alpha$ and $\alpha\beta$ are isomorphisms, this yields that α and β are isomorphisms. Hence $G \cong F$.

54