CHAPTER-6

FUZZY ROUGH BG-BOUNDARY SPACES

The concepts of rough groups and rough subgroups were introduced by R. Biswas and S. Nanda [14]. The concepts of fuzzy groups and fuzzy topological groups were introduced and studied by D. Foster [27]. The concept of boundary of a fuzzy set was introduced by R. H. Warren [81]. In this chapter, the concepts of fuzzy rough topological groups and fuzzy rough G structure spaces are introduced and studied. In this connection, the concept of fuzzy rough BG boundary space is introduced. Interesting characterization is established.

6.1 FUZZY ROUGH G STRUCTURE SPACE AND FUZZY ROUGH BG-BOUNDARY

In this section, the concepts of fuzzy rough topological groups, fuzzy rough G structure spaces and fuzzy rough G boundary are introduced and studied.

Definition 6.1.1. Let X be a rough group. A fuzzy rough set $G = (G_L, G_U)$ on X is said to be a fuzzy rough group if and only if it satisfies the following
conditions:

(i) \(G_L(x, y) \geq \min\{G_L(x), G_L(y)\} \) and \(G_U(x, y) \geq \min\{G_U(x), G_U(y)\} \) for all \(x, y \in X \).

(ii) \(G_L(x^{-1}) \geq G_L(x) \) and \(G_U(x^{-1}) \geq G_U(x) \) for all \(x \in X \).

Definition 6.1.2. Let \(A \) be a fuzzy rough set in \(X \) and \(T \) be a fuzzy rough topology on \(X \). Then the fuzzy rough subspace topology on \(A \) is the family of fuzzy rough subsets of \(A \) which are the intersections with \(A \) of fuzzy rough open sets in \(X \). The fuzzy rough subspace topology is denoted by \(T_A \), and the pair \((A, T_A)\) is called a fuzzy rough subspace of \((X, T)\).

Definition 6.1.3. Let \((A, T_A)\) and \((B, S_B)\) be any two fuzzy rough subspaces of fuzzy rough topological spaces \((X, T)\), \((Y, S)\) respectively. A function \(f : (A, T_A) \to (B, S_B) \) is said to be a relatively fuzzy rough continuous function if and only if for each fuzzy rough open \(\hat{V} = V \cap B \) in \(S_B \), the intersection \(f^{-1}(\hat{V}) \cap A \) is fuzzy rough open in \(T_A \).

Definition 6.1.4. Let \(X \) be a rough set. Then \(X \) is said to be a rough group if \(X_L \) and \(X_U \) are groups.

Definition 6.1.5. Let \(X \) be a rough group and \(T \) be a fuzzy rough topology on \(X \). Let \(G \) be any fuzzy rough group in \(X \) and let \(G \) be endowed with the fuzzy rough subspace topology \(T_G \). Then \(G \) is a fuzzy rough topological group in \(X \) if and only if it satisfies the following two conditions:
(i) The mapping $\alpha : (x, y) \rightarrow xy$ of $(G, T_G) \times (G, T_G)$ into (G, T_G) is relatively fuzzy rough continuous.

(ii) The mapping $\beta : x \rightarrow x^{-1}$ of (G, T_G) into (G, T_G) is relatively fuzzy rough continuous.

Definition 6.1.6. A non empty set X is a family \mathcal{G} of fuzzy rough topological groups in X satisfies the following conditions:

(i) $\tilde{0}, \tilde{1} \in \mathcal{G}$.

(ii) If $A, B \in \mathcal{G}$, then $A \cap B \in \mathcal{G}$.

(iii) If $A_j \in \mathcal{G}$ for all $j \in J$, then $\bigcup_{j \in J} A_j \in \mathcal{G}$.

then \mathcal{G} is said to be a fuzzy rough topological group structure on X and the pair (X, \mathcal{G}) is said to be a fuzzy rough topological group (in short, fuzzy rough \mathcal{G}) structure space. Any member of fuzzy rough \mathcal{G} structure space is called a fuzzy rough open group. The complement of fuzzy rough open group is a fuzzy rough closed group.

Definition 6.1.7. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let $A = (A_L, A_U)$ be any fuzzy rough topological group. Then the fuzzy rough \mathcal{G} interior of A is defined by

$$FR\mathcal{G}int(A) = \bigcup\{B : B \text{ is a fuzzy rough open group and } B \subseteq A\}.$$
Definition 6.1.8. Let \((X, \mathcal{G})\) be a fuzzy rough \(\mathcal{G}\) structure space. Let \(A = (A_L, A_U)\) be any fuzzy rough topological group. Then the fuzzy rough \(\mathcal{G}\) closure of \(A\) is defined by

\[
FR\mathcal{G}cl(A) = \cap\{B : B \text{ is a fuzzy rough closed group and } B \supseteq A\}.
\]

Definition 6.1.9. Let \((X, \mathcal{G})\) be a fuzzy rough \(\mathcal{G}\) structure space. Let \(A\) be any fuzzy rough topological group. Then \(A\) is said to be a fuzzy rough \(t\)-open group if \(FR\mathcal{G}int(A) = FR\mathcal{G}int(FR\mathcal{G}cl(A))\)

Definition 6.1.10. Let \((X, \mathcal{G})\) be a fuzzy rough \(\mathcal{G}\) structure space. Let \(A\) be any fuzzy rough topological group. Then \(A\) is said to be a fuzzy rough \(B\)-open group if \(A = B \cap C\) where \(B\) is a fuzzy rough open group and \(C\) is a fuzzy rough \(t\)-open group. The complement of fuzzy rough \(B\)-open group is a fuzzy rough \(B\)-closed group.

Definition 6.1.11. Let \((X, \mathcal{G})\) be a fuzzy rough \(\mathcal{G}\) structure space. Let \(A = (A_L, A_U)\) be any fuzzy rough topological group. Then the fuzzy rough \(B\mathcal{G}\) interior of \(A\) is defined by

\[
FRB\mathcal{G}int(A) = \cup\{B : B \text{ is a fuzzy rough } B\text{-open group in } X \text{ and } B \subseteq A\}.
\]

Definition 6.1.12. Let \((X, \mathcal{G})\) be a fuzzy rough \(\mathcal{G}\) structure space. Let \(A = (A_L, A_U)\) be any fuzzy rough topological group. Then the fuzzy rough \(B\mathcal{G}\) closure of \(A\) is defined by

\[
FRB\mathcal{G}cl(A) = \cap\{B : B \text{ is a fuzzy rough } B\text{-closed group in } X \text{ and } B \supseteq A\}.
\]
Proposition 6.1.1. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let A be any fuzzy rough topological group. Then the following conditions hold:

(i) $F RB\mathcal{G}int(A) \subseteq A \subseteq F RB\mathcal{G}cl(A)$.

(ii) $(F RB\mathcal{G}int(A))' = F RB\mathcal{G}cl(A')$.

(iii) $(F RB\mathcal{G}cl(A))' = F RB\mathcal{G}int(A')$.

Proof. The proof follows from Definition 6.1.11. and Definition 6.1.12.

Definition 6.1.13. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let A be any fuzzy rough topological group. Then the fuzzy rough \mathcal{G}-boundary of A, is denoted and defined as

$$FR\mathcal{G}bd(A) = FR\mathcal{G}cl(A) \cap FR\mathcal{G}cl(A').$$

Definition 6.1.14. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let A be any fuzzy rough topological group. Then the fuzzy rough $\mathcal{B}\mathcal{G}$-boundary of A, is denoted and defined as

$$FR\mathcal{B}\mathcal{G}bd(A) = FR\mathcal{B}\mathcal{G}cl(A) \cap FR\mathcal{B}\mathcal{G}cl(A').$$

Proposition 6.1.2. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let A and B be any two fuzzy rough topological groups. Then the following conditions hold:

(i) $F RB\mathcal{G}bd(A) = F RB\mathcal{G}bd(A')$.

141
(ii) If \(A\) is a fuzzy rough closed group, then \(FR\overline{BG}bd(A) \subseteq A\).

(iii) If \(A\) is a fuzzy rough open group, then \(FR\overline{BG}bd(A) \subseteq A'\).

(iv) Let \(A \subseteq B\) and \(B\) be any fuzzy rough closed group (resp., \(A\) be any fuzzy rough open group). Then \(FR\overline{BG}bd(A) \subseteq B\) (resp., \(FR\overline{BG}bd(A) \subseteq B'\)).

(v) \((FR\overline{BG}bd(A))' = FR\overline{BG}int(A) \cup FR\overline{BG}int(A')\).

Proof. (i) \[FR\overline{BG}bd(A) = FR\overline{BG}cl(A) \cap FR\overline{BG}cl(A') \]
\[= FR\overline{BG}cl(A') \cap FR\overline{BG}cl(A) \]
\[= FR\overline{BG}cl(A') \cap FR\overline{BG}cl(A')' \]
\[= FR\overline{BG}bd(A'). \]

(ii) \[FR\overline{BG}bd(A) = FR\overline{BG}cl(A) \cap FR\overline{BG}cl(A') \]
\[\subseteq FR\overline{BG}cl(A) \]
\[\subseteq A. \]

Hence, \(FR\overline{BG}bd(A) \subseteq A\).

(iii) Let \(A\) be any fuzzy rough \(B\)-open group. Then, \(A'\) is fuzzy rough \(B\)-closed group. By (ii), \(FR\overline{BG}bd(A') \subseteq A'\) and by (i), \(FR\overline{BG}bd(A) \subseteq A'\).

(iv) Since \(A \subseteq B\) implies that \(FR\overline{BG}cl(A) \subseteq FR\overline{BG}cl(B)\), we have
\[FR\overline{BG}bd(A) = FR\overline{BG}cl(A) \cap FR\overline{BG}cl(A') \]
\[\subseteq FR\overline{BG}cl(B) \cap FR\overline{BG}cl(A') \]
\[\subseteq FR\overline{BG}cl(B) \]
\[= B, \text{ since } B \text{ is a } B\text{-closed group.} \]

142
\[(v) \quad (FRBG_{bd}(A))' = (FRBG_{cl}(A) \cap FRBG_{cl}(A'))'
= (FRBG_{cl}(A))' \cup (FRBG_{cl}(A'))'
= FRBG_{int}(A') \cup FRBG_{int}(A).\]

Definition 6.1.15. Let \(A\) and \(B\) be any two fuzzy rough topological groups. Then \(A - B\) is defined by \(A - B = A \cap B'\).

Proposition 6.1.3. Let \((X, \mathcal{G})\) be a fuzzy rough \(\mathcal{G}\) structure space. Let \(A\) be any fuzzy rough topological group. Then the following conditions hold:

(i) \(FRBG_{bd}(A) = FRBG_{cl}(A) - FRBG_{int}(A)\).

(ii) \(FRBG_{bd}(FRBG_{int}(A)) \subseteq FRBG_{bd}(A)\).

(iii) \(FRBG_{bd}(FRBG_{cl}(A)) \subseteq FRBG_{bd}(A)\).

(iv) \(FRBG_{int}(A) \subset A - FRBG_{bd}(A)\).

Proof. (i) Since \((FRBG_{cl}(A'))' = FRBG_{int}(A)\). Therefore,

\[
FRBG_{bd}(A) = FRBG_{cl}(A) \cap FRBG_{cl}(A')
= FRBG_{cl}(A) - (FRBG_{cl}(A'))'
= FRBG_{cl}(A) - FRBG_{int}(A).
\]

Thus, \(FRBG_{bd}(A) = FRBG_{cl}(A) - FRBG_{int}(A)\). Hence (i).

(ii) \(FRBG_{bd}(FRBG_{int}(A)) = FRBG_{cl}(FRBG_{int}(A)) - FRBG_{int}(FRBG_{int}(A))
= FRBG_{cl}(FRBG_{int}(A)) - FRBG_{int}(A)\)
⊆ \(FRBG_{cl}(A) - FRBG_{int}(A) \)

\[= FRBG_{bd}(A). \]

(iii) \(FRBG_{bd}(FRBG_{cl}(A)) \)

\[= FRBG_{cl}(FRBG_{cl}(A)) - FRBG_{int}(FRBG_{cl}(A)) \]

\[= FRBG_{cl}(A) - FRBG_{int}(FRBG_{cl}(A)) \]

\[⊆ FRBG_{cl}(A) - FRBG_{int}(A) \]

\[= FRBG_{bd}(A). \]

(iv) \(A - FRBG_{bd}(A) = A \cap (FRBG_{bd}(A))' \)

\[= A \cap (FRBG_{cl}(A) \cap FRBG_{cl}(A'))' \]

\[= A \cap (FRBG_{int}(A') \cup FRBG_{int}(A)) \]

\[= (A \cap FRBG_{int}(A')) \cup (A \cap FRBG_{int}(A)) \]

\[= (A \cap FRBG_{int}(A')) \cup FRBG_{int}(A) \]

\[⊇ FRBG_{int}(A). \]

Proposition 6.1.4. Let \((X, \mathcal{G})\) be a fuzzy rough \(\mathcal{G}\) structure space. Let \(A\) and \(B\) be any two fuzzy rough topological groups. Then, \(FRBG_{bd}(A \cup B) \subseteq FRBG_{bd}(A) \cup FRBG_{bd}(B)\).

Proof. \(FRBG_{bd}(A \cup B) = FRBG_{cl}(A \cup B) \cap FRBG_{cl}(A \cup B)'\)

\[\subseteq (FRBG_{cl}(A) \cup FRBG_{cl}(B)) \cap (FRBG_{cl}(A') \cap FRBG_{cl}(B')) \]

\[= [FRBG_{cl}(A) \cap (FRBG_{cl}(A') \cap FRBG_{cl}(B'))] \cup \]

\[[FRBG_{cl}(B) \cap (FRBG_{cl}(A') \cap FRBG_{cl}(B'))] \]

\[= (FRBG_{bd}(A) \cap FRBG_{cl}(B')) \cup (FRBG_{bd}(B) \cap FRBG_{cl}(A')) \]

\[\subseteq FRBG_{bd}(A) \cup FRBG_{bd}(B). \]
Proposition 6.1.5. Let \((X, G)\) be a fuzzy rough \(G\) structure space. Let \(A\) and \(B\) be any two fuzzy rough topological groups. Then,

\[FRBGbd(A \cap B) \subseteq FRBGbd(A) \cup FRBGbd(B). \]

Proof.

\[
FRBGbd(A \cap B) \\
= FRBGcl(A \cap B) \cap FRBGcl(A \cap B)' \\
\subseteq (FRBGcl(A) \cap FRBGcl(B)) \cap (FRBGcl(A') \cup FRBGcl(B')) \\
= [(FRBGcl(A) \cap FRBGcl(B)) \cap FRBGcl(A')] \cup \\
[(FRBGcl(A) \cap FRBGcl(B)) \cap FRBGcl(B')]] \\
= (FRBGbd(A) \cap FRBGcl(B)) \cup (FRBGbd(B) \cap FRBGcl(A)) \\
\subseteq FRBGbd(A) \cup FRBGbd(B).
\]

Proposition 6.1.6. Let \((X, G)\) be a fuzzy rough \(G\) structure space. Let \(A\) be any fuzzy rough topological group. Then the following conditions hold:

(i) \(FRBGbd(FRBGbd(A)) \subseteq FRBGbd(A)\).

(ii) \(FRBGbd(FRBGbd(FRBGbd(A))) \subseteq FRBGbd(FRBGbd(A))\).

Proof.

(i) \(FRBGbd(FRBGbd(A))\)

\[
= FRBGcl(FRBGbd(A)) \cap FRBGcl(FRBGbd(A))' \\
\subseteq FRBGcl(FRBGbd(A)) \\
= FRBGbd(A).
\]
Definition 6.1.16. Let \(A = (A_L, A_U) \) be a fuzzy rough topological group of \(X \) and \(B = (B_L, B_U) \) be a fuzzy rough topological group of \(Y \), then the fuzzy rough topological group \(A \times B = (A_L \times B_L, A_U \times B_U) \) of \(X \times Y \) is defined by

\[
(A_L \times B_L)(x, y) = \min\{A_L(x), B_L(y)\} \quad \text{for every} \quad (x, y) \in X_L \times Y_L
\]

\[
(A_U \times B_U)(x, y) = \min\{A_U(x), B_U(y)\} \quad \text{for every} \quad (x, y) \in X_U \times Y_U.
\]

Note 6.1.1. Let \(A \) and \(B \) be any two fuzzy rough topological groups in \(X \) and \(Y \) then, \((A \times B)' = (1_L - A_L \times B_L, 1_U - A_U \times B_U) \).

Proposition 6.1.7. If \(A = (A_L, A_U) \) is a fuzzy rough topological group of \(X \) and \(B = (B_L, B_U) \) is a fuzzy rough topological group of \(Y \), then \((A \times B)' = A' \times 1 \cup 1 \times B' \).

Proof. Since,

\[
A_L \times B_L(x, y) = \min(A_L(x), B_L(y)), \quad \text{for every} \quad (x, y) \in X_L \times Y_L
\]

\[
1_L - A_L \times B_L(x, y) = \max(1 - A_L(x), 1 - B_L(y))
\]

\[
= \max(A'_U(x), B'_U(y))
\]

\[
= \max((A'_U \times 1_U)(x, y), (1_U \times B'_U)(x, y))
\]

\[
1_L - A_L \times B_L = A'_U \times 1_U \cup 1_U \times B'_U
\]
and similarly $1_U - A_U \times B_U = A'_L \times 1_L \cup 1_L \times B'_L$. This implies that,

$$(A \times B)' = A' \times \bar{1} \cup \bar{1} \times B'.$$

Definition 6.1.17. Let (X, \mathcal{G}_1) and (Y, \mathcal{G}_2) be any two fuzzy rough structure spaces. The fuzzy rough product \mathcal{G} structure space of (X, \mathcal{G}_1) and (Y, \mathcal{G}_2) is the cartesian product $(X, \mathcal{G}_1) \times (Y, \mathcal{G}_2)$ of sets (X, \mathcal{G}_1) and (Y, \mathcal{G}_2) together with the fuzzy rough structure $\mathcal{G}_1 \times \mathcal{G}_2$ generated by the family $\{ p_1^{-1}(A) , p_2^{-1}(B) | A \in \mathcal{G}_1, B \in \mathcal{G}_2, \text{ where } p_1 \text{ and } p_2 \text{ are projections of } (X, \mathcal{G}_1) \times (Y, \mathcal{G}_2) \text{ onto } (X, \mathcal{G}_1) \text{ and } (Y, \mathcal{G}_2), \text{ respectively}\}$.

Proposition 6.1.8. Let $A = (A_L, A_U)$ be a fuzzy rough B-closed group of a fuzzy rough \mathcal{G}_1 structure space X and $B = (B_L, B_U)$ be a fuzzy rough B-closed group of a fuzzy rough \mathcal{G}_2 structure space Y. Then $A \times B$ is a fuzzy rough B-closed group of the fuzzy rough product \mathcal{G} structure space $X \times Y$.

Proof. Let A and B be any fuzzy rough topological groups in X and Y. By Proposition 6.1.7, $\bar{1} - A \times B = A' \times \bar{1} \cup \bar{1} \times B'$. Since $A' \times \bar{1}$ and $\bar{1} \times B'$ are fuzzy rough B-open groups in X and Y respectively. $A' \times \bar{1} \cup \bar{1} \times B'$ is a fuzzy rough B-open group of $X \times Y$. Hence, $\bar{1} - A \times B$ is a fuzzy rough B-open group of $X \times Y$. Consequently, $A \times B$ is a fuzzy rough B-closed group of $X \times Y$.

Proposition 6.1.9. If $A = (A_L, A_U)$ is a fuzzy rough topological group of a fuzzy rough \mathcal{G}_1 structure space X and $B = (B_L, B_U)$ is a fuzzy rough topological group of a fuzzy rough \mathcal{G}_2 structure space Y, then $FRBG_1cl(A) \times FRBG_2cl(B)$.

147
\[FRBG_2 cl(B) \supseteq FRBG cl(A \times B). \] Also, we have \[FRBG_1 int(A) \times FRBG_2 int(B) \supseteq FRBG int(A \times B). \]

Proof. Since \(A \subseteq FRBG_1 cl(A) \) and \(B \subseteq FRBG_2 cl(B) \), \(A \times B \subseteq FRBG_1 cl(A) \times FRBG_2 cl(B) \).

By Proposition 6.1.8, \(FRBG cl(A \times B) \subseteq FRBG cl(FRBG_1 cl(A) \times FRBG_2 cl(B)) \).

Definition 6.1.18. A fuzzy rough \(\mathcal{G}_1 \) structure space \((X, \mathcal{G}_1)\) is fuzzy rough \(\mathcal{B} \)-product related to another fuzzy rough \(\mathcal{G}_2 \) structure space \((Y, \mathcal{G}_2)\) if for any fuzzy rough topological group \(C = (C_L, C_U) \) of \(X \) and \(D = (D_L, D_U) \) of \(Y \) whenever \(A' \not\subseteq C \) and \(B' \not\subseteq D \) implies that \((A' \times \bar{1}) \cup (\bar{1} \times B') \supseteq C \times D\), where \(A = (A_L, A_U) \) is a fuzzy rough \(\mathcal{B} \)-open group of \(X \) and \(B = (B_L, B_U) \) is a fuzzy rough \(\mathcal{B} \)-open group of \(Y \), there exist \(A_1 \in \mathcal{G}_1 \) and \(B_1 \in \mathcal{G}_2 \) such that \(A_1' \supseteq C \) or \(B_1' \supseteq D \) and \((A' \times \bar{1}) \cup (\bar{1} \times B') = (A_1' \times \bar{1}) \cup (\bar{1} \times B_1')\).

Proposition 6.1.10. Let \((X, \mathcal{G}_1)\) and \((Y, \mathcal{G}_2)\) be any two fuzzy rough structure spaces such that \((X, \mathcal{G}_1)\) is \(\mathcal{B} \)-product related to \((Y, \mathcal{G}_2)\). Then, for a fuzzy rough topological group \(A = (A_L, A_U) \) of \(X \) and a fuzzy rough topological group \(B = (B_L, B_U) \) of \(Y \),

(i) \[FRBG cl(A \times B) = FRBG_1 cl(A) \times FRBG_2 cl(B), \]

(ii) \[FRBG int(A \times B) = FRBG_1 int(A) \times FRBG_2 int(B). \]

Proof. (i) For fuzzy rough topological groups \(A_i = (A_{L_i}, A_{U_i}) \)'s of \(X \) and \(B_j = (B_{L_j}, B_{U_j}) \)'s of \(Y \), we first note that,
(i) \(\inf \{ A_i, B_j \} = \min(\inf(A_i), \inf(B_j)) \),

(ii) \(\inf \{ A_i \times \tilde{1} \} = \inf(A_i) \times \tilde{1} \),

(iii) \(\inf \{ \tilde{1} \times B_j \} = \tilde{1} \times \inf(B_j) \).

By Proposition 6.1.9, it follows that

\[FRBG_{1cl}(A) \times FRBG_{2cl}(B) \supseteq FRBG_{cl}(A \times B). \tag{6.1.1} \]

It is sufficient to show that

\[FRBG_{cl}(A \times B) \supseteq FRBG_{1cl}(A) \times FRBG_{2cl}(B). \]

Let \(A_i \) be a fuzzy rough \(B \)-open group in \(G_1 \) and \(B_j \) be a fuzzy rough \(B \)-open group in \(G_2 \). Then,

\[
FRBG_{cl}(A \times B) = \inf \{ (A_i \times B_j)' \mid (A_i \times B_j)' \supseteq A \times B \} \\
= \inf \{ A'_i \times \tilde{1} \cup \tilde{1} \times B'_j \mid A'_i \times \tilde{1} \cup \tilde{1} \times B'_j \supseteq A \times B \} \\
= \inf \{ A'_i \times \tilde{1} \cup \tilde{1} \times B'_j \mid A'_i \supseteq A \text{ or } B'_j \supseteq B \} \\
= \min(\inf \{ A'_i \times \tilde{1} \cup \tilde{1} \times B'_j \mid A'_i \supseteq A \}, \inf \{ A'_i \times \tilde{1} \cup \tilde{1} \times B'_j \mid B'_j \supseteq B \}).
\]

Since

\[
\inf \{ A'_i \times \tilde{1} \cup \tilde{1} \times B'_j \mid A'_i \supseteq A \} \supseteq \inf \{ A'_i \times \tilde{1} \mid A'_i \supseteq A \} \\
= \inf \{ A'_i \mid A'_i \supseteq A \} \times \tilde{1} \\
= FRBG_{1cl}(A) \times \tilde{1}
\]

and

\[
\inf \{ A'_i \times \tilde{1} \cup \tilde{1} \times B'_j \mid B'_j \supseteq B \} \supseteq \inf \{ \tilde{1} \times B'_j \mid B'_j \supseteq B \}
\]
\[= \hat{1} \times \inf \{B' \mid B' \supseteq B\} \]
\[= \hat{1} \times FRBG_{2cl}(B).\]

We have, \(FRBG_{cl}(A \times B) \supseteq \min(FRBG_{1cl}(A') \times \hat{1}, \hat{1} \times FRBG_{2cl}(B')) = FRBG_{1cl}(A) \times FRBG_{2cl}(B).\)

\[FRBG_{cl}(A \times B) \supseteq FRBG_{1cl}(A) \times FRBG_{2cl}(B) \quad (6.1.2)\]

From (6.1.1) and (6.1.2),

\[FRBG_{cl}(A \times B) = FRBG_{1cl}(A) \times FRBG_{2cl}(B).\]

(ii) The proof is similar to that of (i) and the Proposition 6.1.9.

Proposition 6.1.11. Let \(A, B, C\) and \(D\) be fuzzy rough topological groups in \(X\). Then \((A \cap B) \times (C \cap D) = (A \times D) \cap (B \times C)\).

Proof.

\[((A_L \cap B_L) \times (C_L \cap D_L))(x,y) = min((A_L \cap B_L)(x), (C \cap D)(y))\]
\[= min(min(A_L(x), B_L(x)), min(C_L(y), D_L(y)))\]
\[= min(min(A_L(x), D_L(y)), min(B_L(x), C_L(y)))\]
\[= min((A_L \times D_L)(x,y), (B_L \times C_L)(x,y))\]
\[= ((A_L \times D_L) \cap (B_L \times C_L))(x,y)\]

for all \((x,y) \in X_L \times X_L\).

Similarly,

\[((A_U \cap B_U) \times (C_U \cap D_U))(x,y) = ((A_U \times D_U) \cap (B_U \times C_U))(x,y) \text{ for all } (x,y) \in X_U \times X_U.\]
Hence, \((A \cap B) \times (C \cap D) = (A \times D) \cap (B \times C)\).

Proposition 6.1.12. Let \((X, \mathcal{G}_i) (i=1,2,\ldots,n)\) be a family of fuzzy rough product related structures spaces. If each \(A_i\) is a fuzzy rough topological groups in \(X_i\), then

\[
FRBG_{i, bd}\prod_{i=1}^{n}(A_i) = [FRBG_{1, bd}A_1 \times F RBG_{2, cl}(A_2) \times \ldots \times F RBG_{n, cl}A_n]]
\]

\[
\cup [FRBG_{1, cl}A_1 \times F RBG_{2, bd}(A_2) \times \ldots \times F RBG_{n, cl}A_n]]
\]

\[
\cup \ldots \cup [FRBG_{1, cl}A_1 \times F RBG_{2, cl}(A_2) \times \ldots \times F RBG_{n, bd}A_n)].
\]

Proof. We use Propositions 6.1.3 (i), 6.1.10 and 6.1.11 to prove this. It suffices to prove this for \(n=2\). Consider

\[
FRBG_{n, bd}(A_1 \times A_2)
\]

\[
= FRBG_{n, cl}(A_1 \times A_2) - FRBG_{n, int}(A_1 \times A_2)
\]

\[
= (FRBG_{1, cl}(A_1) \times F RBG_{2, cl}(A_2)) - (FRBG_{1, int}(A_1) \times F RBG_{2, int}(A_2))
\]

\[
= (FRBG_{1, cl}(A_1) \times F RBG_{2, cl}(A_2)) - (FRBG_{1, int}(A_1) \cap F RBG_{1, cl}(A_1))
\]

\[
\times (F RBG_{2, int}(A_2) \cap F RBG_{2, cl}(A_2))
\]

\[
= (FRBG_{1, cl}(A_1) \times F RBG_{2, cl}(A_2)) - (FRBG_{1, int}(A_1) \times F RBG_{2, cl}(A_2))
\]

\[
\cap (FRBG_{1, cl}(A_1) \times F RBG_{2, int}(A_2)) \ (by \ Proposition \ 4.10)
\]

\[
= [(FRBG_{1, cl}(A_1) \times F RBG_{2, cl}(A_2)) - (FRBG_{1, int}(A_1) \times F RBG_{2, cl}(A_2))]
\]

\[
\cup [(FRBG_{1, cl}(A_1) \times F RBG_{2, cl}(A_2)) - (FRBG_{1, cl}(A_1) \times F RBG_{2, int}(A_2))]
\]

151
\begin{align*}
&= [(FRBG_1 cl(A_1) - FRBG_1 int(A_1)) \times FRBG_2 cl(A_2)] \\
&\quad \cup [FRBG_1 cl(A_1) \times (FRBG_2 cl(A_2) - FRBG_2 int(A_2))] \\
&= (FRBG_1 bd(A_1) \times FRBG_2 cl(A_2)) \cup (FRBG_1 cl(A_1) \times FRBG_2 bd(A_2)).
\end{align*}

Definition 6.1.19. Let \((X, G_1)\) and \((Y, G_2)\) be any two fuzzy rough structure spaces. A function \(f : (X, G_1) \to (Y, G_2)\) is said to be fuzzy rough \(BG\)-continuous if and only if for each fuzzy rough open group \(W\) in \(G_2\) the inverse image \(f^{-1}(W)\) is a fuzzy rough \(B\)-open group in \(G_1\).

Proposition 6.1.13. Let \((X, G_1)\) and \((Y, G_2)\) be any two fuzzy rough structure spaces. Let \(f : (X, G_1) \to (Y, G_2)\) be a fuzzy rough \(BG\)-continuous function. Then,

\[FRBGbd(f^{-1}(A)) \subseteq f^{-1}(FRGbd(A)). \]

Proof. Let \(f\) be a fuzzy rough \(BG\)-continuous function. Let \(A\) be any fuzzy rough topological group in \((Y, G_2)\). Then, \(FRGcl(A)\) is a fuzzy rough \(G\)-closed group in \((Y, G_2)\), which implies that \(f^{-1}(FRGcl(A))\) is a fuzzy rough \(BG\)-closed group in \((X, G_1)\). Therefore,

\[FRBGbd(f^{-1}(A)) = FRBGcl(f^{-1}(A)) \cap FRBGcl(f^{-1}(A)') \]
\[\subseteq FRBGcl(f^{-1}(FRGcl(A))) \cap FRBGcl(f^{-1}(FRGcl(A'))) \]
\[= f^{-1}(FRGcl(A)) \cap f^{-1}(FRGcl(A')) \]
\[= f^{-1}(FRGbd(A)). \]
Therefore, \(FRB\mathcal{G}bd(f^{-1}(A)) \subseteq f^{-1}(FRB\mathcal{G}bd(A)) \).

Definition 6.1.20. Let \((X, \mathcal{G}_1)\) and \((Y, \mathcal{G}_2)\) be any two fuzzy rough structure spaces. A function \(f : (X, \mathcal{G}_1) \to (Y, \mathcal{G}_2) \) is said to be fuzzy rough \(\mathcal{G} \)-irresolute if and only if for each fuzzy rough \(\mathcal{B} \)-open group \(W \) in \(\mathcal{G}_2 \) the inverse image \(f^{-1}(W) \) is a fuzzy rough \(\mathcal{B} \)-open group in \(\mathcal{G}_1 \).

Proposition 6.1.14. Let \((X, \mathcal{G}_1)\) and \((Y, \mathcal{G}_2)\) be any two fuzzy rough structure spaces. Let \(f : (X, \mathcal{G}_1) \to (Y, \mathcal{G}_2) \) be a fuzzy rough \(\mathcal{G} \)-irresolute function. Then,

\[
FRB\mathcal{G}bd(f^{-1}(A)) \subseteq f^{-1}(FRB\mathcal{G}bd(A)).
\]

Proof. Let \(f \) be a fuzzy rough \(\mathcal{G} \)-irresolute function. Let \(A \) be any fuzzy rough topological group in \((Y, \mathcal{G}_2)\). Then, \(FRB\mathcal{G}cl(A) \) is a fuzzy rough \(\mathcal{G} \)-closed group in \((Y, \mathcal{G}_2)\), which implies that \(f^{-1}(FRB\mathcal{G}cl(A)) \) is a fuzzy rough \(\mathcal{G} \)-closed group in \((X, \mathcal{G}_1)\). Therefore,

\[
FRB\mathcal{G}bd(f^{-1}(A)) = FRB\mathcal{G}cl(f^{-1}(A)) \cap FRB\mathcal{G}cl(f^{-1}(A))' \\
\subseteq FRB\mathcal{G}cl(f^{-1}(FRB\mathcal{G}cl(A))) \cap FRB\mathcal{G}cl(f^{-1}(FRB\mathcal{G}cl(A'))) \\
= f^{-1}(FRB\mathcal{G}cl(A)) \cap f^{-1}(FRB\mathcal{G}cl(A')) \\
= f^{-1}(FRB\mathcal{G}cl(A) \cap FRB\mathcal{G}cl(A')) \\
= f^{-1}(FRB\mathcal{G}bd(A)).
\]

Therefore, \(FRB\mathcal{G}bd(f^{-1}(A)) \subseteq f^{-1}(FRB\mathcal{G}bd(A)) \).
6.2 CHARACTERIZATION OF FUZZY ROUGH $B\mathcal{G}$-BOUNDARY SPACES

In this section, the concept of fuzzy rough $B\mathcal{G}$-boundary space is introduced. In this connection, the characterization of fuzzy rough $B\mathcal{G}$-boundary space is established.

Definition 6.2.1. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let $F_{RBG}bd(A)$ be the fuzzy rough $B\mathcal{G}$-boundary of A. Then the fuzzy rough $B\mathcal{G}$-interior of $F_{RBG}bd(A)$ is defined by

$$F_{RBG}^\circ(F_{RBG}bd(A)) = \bigcup \{ B : B \text{ is a fuzzy rough } B\text{-open group and } B \subseteq F_{RBG}bd(A) \}.$$

Definition 6.2.2. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let $F_{RBG}bd(A)$ be the fuzzy rough $B\mathcal{G}$-boundary of A. Then the fuzzy rough $B\mathcal{G}$-closure of $F_{RBG}bd(A)$ is defined by

$$F_{RBG}^\circ(F_{RBG}bd(A)) = \bigcap \{ B : B \text{ is a fuzzy rough } B\text{-closed group and } B \supseteq F_{RBG}bd(A) \}.$$

Proposition 6.2.1. Let (X, \mathcal{G}) be a fuzzy rough \mathcal{G} structure space. Let $F_{RBG}bd(A)$ be the fuzzy rough $B\mathcal{G}$-boundary of A. Then the following conditions hold.

(i) $F_{RBG}^\circ(F_{RBG}bd(A)) \subseteq F_{RBG}bd(A) \subseteq F_{RBG}^\circ(F_{RBG}bd(A))$.

(ii) $(F_{RBG}^\circ(F_{RBG}bd(A)))' = F_{RBG}^\circ(F_{RBG}bd(A)')$.

(iii) $(F_{RBG}^\circ(F_{RBG}bd(A)))' = F_{RBG}^\circ(F_{RBG}bd(A)')$.

154
Proof: The proof follows from Definition 6.2.1 and Definition 6.2.2.

Definition 6.2.3. Let \((X, G)\) be a fuzzy rough \(G\) structure space. Then \((X, G)\) is said to be a fuzzy rough \(BG\)-boundary space if the fuzzy rough \(BG\)-closure of fuzzy rough \(BG\)-boundary of each fuzzy rough open group is a fuzzy rough \(B\)-open group. That is, \(FRBG^{-}(FRBG_{bd}(A))\) is fuzzy rough \(B\)-open group for every \(A \in G\).

Proposition 6.2.2. Let \((X, G)\) be a fuzzy rough \(G\) structure space. Then the following statements are equivalent:

(i) \((X, G)\) is a fuzzy rough \(BG\)-boundary space.

(ii) Let \(FRBG_{bd}(A)\) be fuzzy rough \(BG\)-boundary of \(A\). Then \(FRBG^{\circ}(FRBG_{bd}(A))\) is a fuzzy rough \(B\)-closed group.

(iii) For each \(FRBG_{bd}(A)\),

\[
FRBG^{-}(FRBG_{bd}(A)) + FRBG^{-}(FRBG^{-}(FRBG_{bd}(A)))' = \tilde{1}.
\]

(iv) For every pair of fuzzy rough \(BG\)-boundary sets \(FRBG_{bd}(A)\) and \(FRBG_{bd}(B)\) with \(FRBG^{-}(FRBG_{bd}(A)) + FRBG_{bd}(B) = \tilde{1}\), we have \(FRBG^{-}(FRBG_{bd}(A)) + FRG^{-}(FRBG_{bd}(B)) = \tilde{1}\).

Proof. (i)\(\Rightarrow\)(ii): Let \(FRBG_{bd}(A)\) be the fuzzy rough \(BG\) boundary of \(A\). Then, \((FRBG_{bd}(A))'\) is a fuzzy rough boundary complement of \(FRBG_{bd}(A)\). Now,

\[
FRBG^{-}(FRBG_{bd}(A))' = (FRBG^{\circ}(FRBG_{bd}(A)))'.
\]
By (i), \(FRBG^{-}(FRBGbd(A))' \) is a fuzzy rough \(B \)-open group, which implies that \(FRBG^{\circ}(FRBGbd(A)) \) is a fuzzy rough \(B \)-closed group.

(ii) \(\Rightarrow \) (iii): Let \(FRBGbd(A) \) be the fuzzy rough \(BG \)-boundary of \(A \). Then,
\[
FRBG^{-}(FRBGbd(A)) + FRBG^{-}(FRG^{-}(FRBGbd(A)))'
= FRBG^{-}(FRBGbd(A)) + FRBG^{-}(FRG^{\circ}(FRBGbd(A)))'
= FRBG^{-}(FRBGbd(A)) + (FRBG^{-}(FRBGbd(A)))'
= \tilde{1}.
\]
Since \(FRBGbd(A) \) is a fuzzy rough \(BG \)-boundary of \(A \), (\(FRBGbd(A) \)') is a fuzzy rough \(BG \)-boundary of \(FRBGbd(A) \). Hence by (ii), \(FRBG^{\circ}(FRBGbd(A))' \) is fuzzy rough \(B \)-closed group. Therefore, by (6.2.1)
\[
FRBG^{-}(FRBGbd(A)) + FRBG^{-}(FRBGbd(A)) = \tilde{1}.
\]

(iii) \(\Rightarrow \) (iv): Let \(FRBGbd(A) \) and \(FRBGbd(B) \) be any two fuzzy rough \(BG \)-boundary of \(A \) and \(B \) respectively, such that
\[
FRBG^{-}(FRBGbd(A)) + FRBG^{-}(FRBGbd(B)) = \tilde{1}.
\]
Then by (iii),
\[
\tilde{1} = FRBG^{-}(FRBGbd(A)) + FRBG^{-}(FRG^{-}(FRBGbd(A)))'
= FRBG^{-}(FRBGbd(A)) + FRBG^{-}(FRBGbd(B)).
\]
Therefore, \(FRBG^{-}(FRBGbd(A)) + FRBG^{-}(FRBGbd(B)) = \tilde{1} \).

(iv) \(\Rightarrow \) (i): Let \(FRBGbd(A) \) be a fuzzy rough \(BG \)-boundary of \(A \). Put \(FRBGbd(B) = (FRBG^{-}(FRBGbd(A)))' = \tilde{1} - FRBG^{-}(FRBGbd(A)) \). Then,
\[
FRBG^-(FRBG\text{bd}(A)) + FRBG\text{bd}(B) = \tilde{1}. \text{ Therefore by (iv), } FRBG^-(FRBG\text{bd}(A)) + FRBG^-(FRBG\text{bd}(B)) = \tilde{1}. \text{ This implies that, } FRBG^-(FRBG\text{bd}(A)) \text{ is a fuzzy rough } B\text{-open group and so } (X, G) \text{ is a fuzzy rough } BG\text{-boundary spaces.}
\]

Remark 6.2.1. Every fuzzy rough \(B \)-open group is a fuzzy rough \(C \)-open group.

Proposition 6.2.3. If \((X, G)\) is a fuzzy rough \(BG \)-boundary space then every fuzzy rough \(BG \)-closure of \(BG \)-boundary of each fuzzy rough open group is a fuzzy rough \(C \)-open group.

Proof. The proof follows from Definition 6.2.3 and Remark 6.2.1.