LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Fluidization regimes encountered with increasing gas velocities</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Powder classification diagram for fluidization by air (Geldart, 1973)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Simplified fluid bed status graph (Grace, 1986)</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Bubble detection system using light sensor developed by Put et al. (1973)</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Double optical probes designed by Groen et al. (1997)</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Block diagram for bubble characteristics detection using fiber optics probes designed by Okhi et al. (1976)</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Optical bubble detector designed by Okhi and Shirai (1976)</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Needle capacitance probe designed by Werther and Molerus (1973a)</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Sequence showing interaction of probes and rising gas bubbles.</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Problems in determining the bubble diameter using a γ-ray attenuation gauge</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Wind box (all dimensions in mm)</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>Main body of the equipment</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Plan of the wind box – distributor assembly</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Snapshot of experimental setup</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Isometric view of the complete fluidization assembly</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>SEM pictures of particles</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Image processing sequence</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of excess gas velocity (U₀-Umf) and bubble location on bubble diameter (450 µm resin, t = 0.01m, Hₛ = 0.21m)</td>
<td>58</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of excess gas velocity (Uₒ-Uₘₕ) and bubble location on bubble diameter</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(a) (220 µm resin, t = 0.01m, Hₛ = 0.21m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) (640 µm glass-beads, t = 0.01m, Hₛ = 0.29m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) (250 µm sand, t = 0.005m, Hₛ = 0.25m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) (780 µm resin, t = 0.015m, Hₛ = 0.21m)</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>3-D plot of bubble diameter vs height above distributor for varying (U₀-Uₘₕ) (250 µm sand, t = 0.005m, Hₛ = 0.25m)</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of static bed height (Hₛ) on bubble diameter</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>(a) (450 µm resin, t = 0.01m, (Uₒ-Uₘₕ) = 0.102m/s)</td>
<td></td>
</tr>
</tbody>
</table>
(b) (460 µm glass-beads, $t = 0.01$m, \(U_0-U_{mf} = 0.049$m/s)
(c) (250 µm sand, $t = 0.005$m, \(U_0-U_{mf} = 0.144$m/s)
(d) (2084 µm mustard, $t = 0.005$m, \(U_0-U_{mf} = 0.099$m/s)

4.6 Effect of bed thickness (t) on bubble diameter
(250 µm sand, \(H_s = 0.29$m, \(U_0-U_{mf} = 0.091$m/s)

4.7 Effect of bed thickness (t) on bubble diameter
(780 µm resin, \(H_s = 0.21$m, \(U_0-U_{mf} = 0.066$m/s)

4.8 Effect of particle density on bubble diameter
(460 µm glass-bead and 450 µm resin, $t = 0.005$m, \(H_s = 0.29$m,
\(U_0-U_{mf} = 0.059$m/s (glass-bead and 0.056$m/s for resin))

4.9 Effect of particle density on bubble diameter
(220 µm resin and 250 µm sand, $t = 0.01$m, \(H_s = 0.29$m,
\(U_0-U_{mf} = 0.078$m/s (resin) and 0.074$m/s for sand))

4.10 Effect of particle size on bubble diameter
(250 µm and 350 µm sand, $t = 0.01$m, \(H_s = 0.29$m,
\(U_0-U_{mf} = 0.064$m/s (250 µm) and 0.069$m/s for (350 µm))

4.11 Effect of particle size on bubble diameter
(640 µm, 460 µm and 256 µm glass-bead, $t = 0.01$m, \(H_s = 0.25$m,
\(U_0-U_{mf} = 0.08$m/s (640 µm), 0.079$m/s (460 µm) and 0.088$m/s for (256 µm))

4.12 Effect of particle size on bubble diameter
(1002 µm and 2084 µm mustard, $t = 0.01$m, \(H_s = 0.29$m,
\(U_0-U_{mf} = 0.084$m/s (2084 µm) and 0.078$m/s for (1002 µm))

4.13 Effect of excess gas velocity (U_0-U_{mf}) on bubble diameter range
(d$_{min}$ to d$_{max}$)
(a) 640 µm glass-beads, $t = 0.005$m, \(H_s = 0.29$m, \(U_0-U_{mf} = 0.032$m/s
(b) 640 µm glass-beads, $t = 0.005$m, \(H_s = 0.29$m, \(U_0-U_{mf} = 0.048$m/s
(c) 640 µm glass-beads, $t = 0.005$m, \(H_s = 0.29$m, \(U_0-U_{mf} = 0.064$m/s

4.14 Effect of static bed height (H_s) on bubble diameter range (d$_{min}$ to d$_{max}$)
(a) 350 µm sand, $t = 0.015$m, \(H_s = 0.21$m, \(U_0-U_{mf} = 0.058$m/s
(b) 350 µm sand, $t = 0.015$m, \(H_s = 0.29$m, \(U_0-U_{mf} = 0.058$m/s

4.15 Effect of bed thickness (t) on bubble diameter range (d$_{min}$ to d$_{max}$)
(a) 250 µm sand, $t = 0.01$m, \(H_s = 0.29$m, \(U_0-U_{mf} = 0.073$m/s
(b) 250 μm sand, $t = 0.015m$, $H_s = 0.29m$, $(U_o - U_{mf}) = 0.069m/s$

4.16 Effect of bed thickness (t) and static bed height (H_s) on bubble diameter range (d_{min} to d_{max})

(a) 250 μm sand, $t = 0.005m$, $(U_o - U_{mf}) = 0.053m/s$
(b) 250 μm sand, $t = 0.01m$, $(U_o - U_{mf}) = 0.054m/s$
(c) 250 μm sand, $t = 0.015m$, $(U_o - U_{mf}) = 0.055m/s$

4.17 Aspect ratio (d_y/d_x) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Resin system)

4.18 Aspect ratio (d_y/d_x) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Sand system)

4.19 Eccentricity (e) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Resin system)

4.20 Eccentricity (e) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Sand system)

4.21 Wake angle (θ_w) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Resin system)

4.22 Wake angle (θ_w) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Sand system)

4.23 Perimeter (P) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Resin system)

4.24 Perimeter (P) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Sand system)

4.25 Shape factor (Ψ) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Resin system)

4.26 Shape factor (Ψ) vs excess gas velocity ($U_o - U_{mf}$) for varying bubble shapes (Sand system)

4.27 Parity plot of measured bubble size (d_x) and predicted by Hilligardt and Werther (220 μm, 450 μm and 780 μm resin, $t = 0.005m$)

4.28 Parity plot of measured bubble size (d_y) and predicted by Darton-II (220 μm resin, $t = 0.005m, 0.01m$ and 0.015m)

4.29a Parity plot of measured bubble size (d_b) and predicted by Darton-II (220 μm resin, $t = 0.015$)

4.29b Parity plot of measured bubble size (d_b) and predicted by Hilligardt and
Werther (220 μm resin, t = 0.015)

4.30 Parity plot of measured bubble size (d_b) and predicted by Darton-II (220 μm resin, $t = 0.005m$, 0.01m and 0.015m)

4.31 Parity plot of measured bubble size (d_b) and predicted by Geldart (220 μm, 450 μm and 780 μm resin, $t = 0.01m$)

4.32 Parity plot of measured bubble size (d_b) and predicted by Hilligardt and Werther (220 μm, 450 μm and 780 μm resin, $t = 0.01m$)

4.33 Parity plot of measured bubble size (d_x, d_y, d_b) and predicted by Park (450 μm resin, $t = 0.015m$)

4.34 Parity plot of measured bubble size (d_x, d_y, d_b) and predicted by Kato and Wen (780 μm resin, $t = 0.005m$)

4.35a Parity plot of measured bubble size (d_b) and predicted by Kato and Wen (220 μm, 450 μm and 780 μm resin, $t = 0.005m$)

4.35b Parity plot of measured bubble size (d_b) and predicted by Geldart (220 μm, 450 μm and 780 μm resin, $t = 0.005m$)

4.35c Parity plot of measured bubble size (d_b) and predicted by Darton-II (220 μm, 450 μm and 780 μm resin, $t = 0.005m$)

4.36 Parity plot of measured bubble size (d_x, d_y, d_b) and predicted by Yasui and Johansson (780 μm resin, $t = 0.01m$)

4.37 Parity plot of measured bubble size (d_x, d_y, d_b) and predicted by Darton-II (780 μm resin, $t = 0.015m$)

4.38 Parity plot of measured bubble size (d_b) and predicted by Darton-II (220 μm, 450 μm and 780 μm resin, $t = 0.015m$)

4.39 Parity plot of measured bubble size (d_b) and predicted by Darton-II (220 μm, 450 μm and 780 μm resin, $t = 0.005m$, 0.01m and 0.015m)

4.40 Parity plot of measured bubble size (d_b) and predicted by Geldart (250 μm and 350 μm sand, $t = 0.005m$)

4.41 Parity plot of measured bubble size (d_b) and predicted by Park (250 μm sand, $t = 0.01m$)

(a) without influence of static bed height (H_s)

(b) with influence of static bed height (H_s)

4.42 Parity plot of measured bubble size (d_b) and predicted by Darton-II (256 μm glass-beads, $t = 0.01m$)

VI
4.43 Parity plot of measured bubble size(d_b) and predicted by Darton-II
(460 μm glass-beads, $t = 0.01$m)

4.44 Parity plot of measured bubble size(d_b) and predicted by Hilligardt and Werther (460 μm glass-beads, $t = 0.01$m)

4.45 Parity plot of measured bubble size(d_b) and predicted by Werther
(256 μm, 460 μm and 640 μm glass-beads, $t = 0.015$m)

4.46 Parity plot of measured bubble size(d_b) and predicted by Darton-II
(1002 μm and 2084 μm mustard, $t = 0.005$m)

4.47 Parity plot of measured bubble size(d_b) and predicted by Darton-II
(1002 μm and 2084 μm mustard, $t = 0.01$m)

4.48 Parity plot of measured bubble size(d_b) and predicted by Darton-II
(1002 μm and 2084 μm mustard and, $t = 0.005$m and 0.01$m)

4.49 Comparison of measured(d_b) and predicted bubble sizes (Darton-II and Geldart) with bubble location
(220 μm resin, $t = 0.005$m, (U_0-U_{mf}) = 0.0867m/s)

4.50 Comparison of measured(d_b) and predicted bubble sizes (Darton-II and Geldart) with bubble location
(780 μm resin, $t = 0.005$m, (U_0-U_{mf}) = 0.068m/s)

4.51 Comparison of measured(d_b) and predicted bubble sizes (Kato and Wen and Darton-II) with bubble location
(780 μm resin, $t = 0.005$m, (U_0-U_{mf}) = 0.068m/s)

4.52 Comparison of measured(d_b) and predicted bubble sizes (Darton-II and Kato and Wen) with bubble location
(220 μm resin, $t = 0.01$m, (U_0-U_{mf}) = 0.069m/s)

4.53 Comparison of measured(d_b) and predicted bubble sizes (Darton-I and Darton-II) with bubble location
(780 μm resin, $t = 0.01$m, (U_0-U_{mf}) = 0.067m/s)

4.54 Bubble rise velocity (U_{br}) vs bubble diameter at varying excess gas velocities (U_0-U_{mf}) compared with existing correlations of (Clift (1985), Grace and Harrison (1967), Clift et al. (1978)) (220 μm resin, $t = 0.005$m, $H_s = 0.25$m)

4.55 Bubble rise velocity (U_{br}) vs bubble diameter at varying excess gas velocities (U_0-U_{mf}) compared with existing correlations of (Clift

VII
Bubble rise velocity \((U_{br})\) vs bubble diameter at varying excess gas velocities \((U_o-U_{mf})\) compared with existing correlations of \(\text{Clift et al. (1978)}\) \((450 \mu m\text{ resin, } t = 0.01m, H_s = 0.25m)\)

4.56

Bubble rise velocity \((U_{br})\) vs bubble diameter compared with existing correlations of \(\text{Al-Zahrani and Daous (A-D) and Gera and Gautam (G-G)}\) \((250 \mu m \text{ sand, } t = 0.005m, (U_o-U_{mf}) = 0.196m/s)\)

4.57

Bubble rise velocity \((U_{br})\) vs bubble diameter compared with existing correlations of \(\text{Al-Zahrani and Daous (A-D) and Gera and Gautam (G-G)}\) \((350 \mu m \text{ sand, } t = 0.005m, (U_o-U_{mf}) = 0.16m/s)\)

4.58

Bubble rise velocity \((U_{br})\) vs bubble diameter compared with existing correlations of \(\text{Al-Zahrani and Daous (A-D) and Gera and Gautam (G-G)}\) \((780 \mu m \text{ resin, } t = 0.005m, (U_o-U_{mf}) = 0.61m/s)\)

4.59

Bubble rise velocity \((U_{br})\) vs bubble diameter compared with existing correlations of \(\text{Al-Zahrani and Daous (A-D) and Gera and Gautam (G-G)}\) \((780 \mu m \text{ resin, } t = 0.01m, (U_o-U_{mf}) = 0.056m/s)\)

4.60

Bubble rise velocity \((U_{br})\) vs bubble diameter compared with existing correlations of \(\text{Al-Zahrani and Daous (A-D) and Gera and Gautam (G-G)}\) \((780 \mu m \text{ resin, } t = 0.015m, (U_o-U_{mf}) = 0.31m/s)\)

4.61

Bubble rise velocity \((U_{br})\) vs bubble diameter compared with existing correlations of \(\text{Al-Zahrani and Daous (A-D) and Gera and Gautam (G-G)}\) \((220 \mu m \text{ resin, } t = 0.01m, (U_o-U_{mf}) = 0.078m/s)\)

4.62

Bubble rise velocity \((U_{br})\) vs bubble diameter compared with existing correlations of \(\text{Al-Zahrani and Daous (A-D) and Gera and Gautam (G-G)}\) \((2084 \mu m \text{ mustard, } t = 0.01m, (U_o-U_{mf}) = 0.058m/s)\)

4.63

Expansion ratio \((E)\) vs Excess gas velocity \((U_o-U_{mf})\)

4.64

Snap shots of bed surface dynamics

4.65

Expansion ratio \((E)\) vs Excess gas velocity \((U_o-U_{mf})\)

4.66

Expansion ratio \((E)\) vs Excess gas velocity \((U_o-U_{mf})\) \((256 \mu m \text{ glass-beads, } t = 0.005m, H_s = 0.21m)\)
4.67 Expansion ratio (E) vs Excess gas velocity (U_o-U_{mf}) at varying static bed heights (H_s)
(a) 640 μm glass-beads, $t = 0.005$m
(b) 220 μm resin, $t = 0.005$m

4.68 Bubble density (p_b) vs Frame number for varying excess gas velocity (U_o-U_{mf})
(2084 μm mustard, $t = 0.005$m, $H_s = 0.25$m)

4.69 Bubble density (p_b) vs Frame number for varying excess gas velocity (U_o-U_{mf})
(450 μm resin, $t = 0.01$m, $H_s = 0.25$m)

4.70 Bubble density (p_b) vs Frame number for varying excess gas velocity (U_o-U_{mf})
(256 μm glass-beads, $t = 0.01$m, $H_s = 0.25$m)

4.71 Bubble density (p_b) vs Frame number at varying static bed heights (H_s)
((450 μm resin, $t = 0.01$m, $(U_o-U_{mf})=0.048$m/s)

4.72 Bubble density (p_b) vs Frame number at varying static bed heights (H_s)
((250 μm sand, $t = 0.005$m, $(U_o-U_{mf})=0.044$m/s)

4.73 Snapshots showing the effect of bubble coalescence on bubble density (p_b)
(780 μm resin, $t = 0.005$m, $H_s = 0.25$m, $(U_o-U_{mf}) = 0.141$m/s)

4.74 Snapshots showing the effect of bubble coalescence on bubble density (p_b)
(780 μm resin, $t = 0.005$m, $H_s = 0.25$m, $(U_o-U_{mf}) = 0.141$m/s)

4.75 Sequential snapshots showing bubble coalescence
(2084 μm mustard, $t = 0.01$m, $H_s = 0.29$m, $(U_o-U_{mf}) = 0.095$m/s)

4.76 Sequential snapshots depicting “channeling” type bubble coalescence
(450 μm resin, $t = 0.005$m, $H_s = 0.21$m, $(U_o-U_{mf}) = 0.138$m/s)

4.77 Sequential snapshots showing “absorbing” type bubble coalescence
(1002 μm mustard, $t = 0.01$m, $H_s = 0.25$m, $(U_o-U_{mf}) = 0.133$m/s)

4.78 Sequential snapshots showing “absorbing” type bubble coalescence
(780 μm resin, $t = 0.005$m, $H_s = 0.25$m, $(U_o-U_{mf}) = 0.141$m/s)

4.79 Sequential snapshots showing “draining” type bubble coalescence
(640 μm glass-beads, $t = 0.005$m, $H_s = 0.25$m, $(U_o-U_{mf}) = 0.064$m/s)

4.80 Snapshots showing unique sequence of patterns formed
(780 μm resin, $t = 0.005$m, $H_s = 0.35$m, $(U_o-U_{mf}) = 0.141$m/s)

4.81 Snapshots showing vertical bubble splitting
(450 μm resin, $t = 0.01$m, $H_s = 0.21$m, $(U_o-U_{mf}) = 0.333$m/s)

IX
4.82 Snapshots showing horizontal bubble splitting
(1002 μm mustard, t = 0.01m, H_s = 0.21m, (U_0 - U_mf) = 0.063m/s)

4.83 Snapshots showing bubble coalescence and splitting
(450 μm resin, t = 0.01m, H_s = 0.21m, (U_0 - U_mf) = 0.08m/s)

4.84 Sequential snapshots showing round nose slugs
(780 μm resin, t = 0.005m, H_s = 0.21m, (U_0 - U_mf) = 0.066m/s)

4.85 Sequential snapshots showing wall connected slugs
(780 μm resin, t = 0.005m, H_s = 0.21m, (U_0 - U_mf) = 0.066m/s)

4.86 Sequential snapshots showing transformation of round nose slug to wall connected slug
(780 μm resin, t = 0.005m, H_s = 0.21m, (U_0 - U_mf) = 0.159m/s)

4.87 Sequential snapshots of coalescence of round nose with square nose slug
(2084 μm mustard, t = 0.005m, H_s = 0.29m, (U_0 - U_mf) = 0.083m/s)

4.88 Sequential snapshots showing upward movement of square nosed slug
(2084 μm mustard, t = 0.005m, H_s = 0.35m, (U_0 - U_mf) = 0.133m/s)

4.89 Snapshots showing cavity formation for different sizes of glass-bead particles

4.90 Snapshots showing cluster formation inside the bubble for different type of particles (Mustard, resin, glass-bead and sand)

5.1 Schematic view of the arrangement of laser source and optical fiber probes used for optical imaging

5.2 Side view of the arrangement of laser source and optical fiber probes used for optical imaging

5.3 Circuit arrangement

5.4 PCB lay-out

5.5 Schematic view of the experimental set-up along with data acquisition system used for optical imaging

5.6 Signal occurrence vs power intensity variations for various measurement heights.
(a) 0.06m, (b) 0.09m, (c) 0.12m, (d) 0.15m

5.7(a) Modified circuit diagram

5.7(b) Circuit diagram of optical to electrical convertor block

5.8 Approximation algorithm method for data filtering
5.9 Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{mf})\)

(460 \(\mu\)m glass-beads, \(t = 0.01m, H_s = 0.35m\))

5.10(a) Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{mf})\)

(780 \(\mu\)m resin, \(t = 0.005m, H_s = 0.35m\))

5.10(b) Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{raf})\)

(780 \(\mu\)m resin, \(t = 0.015m, H_s = 0.35m\))

5.11(a) Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{mf})\)

(450 \(\mu\)m resin, \(t = 0.015m, H_s = 0.21m\))

5.11(b) Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{mf})\)

(450 \(\mu\)m resin, \(t = 0.015m, H_s = 0.25m\))

5.11(c) Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{mf})\)

(450 \(\mu\)m resin, \(t = 0.015m, H_s = 0.35m\))

5.12(a) Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{mf})\)

(350 \(\mu\)m sand, \(t = 0.005m, H_s = 0.21m\))

5.12(b) Bubble frequency vs sensor location at varying excess gas velocities \((U_0 - U_{mf})\)

(350 \(\mu\)m sand, \(t = 0.005m, H_s = 0.35m\))

5.13 Bubble frequency vs sensor location at varying particle sizes

(250 \(\mu\)m, 350 \(\mu\)m sand)

(a) \(t = 0.01m, (U_0 - U_{mf}) = 0.032 \text{ m/s}\)

(b) \(t = 0.01m, (U_0 - U_{mf}) = 0.064 \text{ m/s}\)

(c) \(t = 0.01m, (U_0 - U_{mf}) = 0.144 \text{ m/s}\)

5.14 Bubble frequency vs sensor location at varying particle sizes

(220 \(\mu\)m, 450 \(\mu\)m, 780 \(\mu\)m resin)

(a) \(t = 0.01m, (U_0 - U_{mf}) = 0.128 \text{ m/s}\)

(b) \(t = 0.01m, (U_0 - U_{mf}) = 0.192 \text{ m/s}\)

5.15 Bubble frequency vs sensor location at varying particle sizes

(1002 \(\mu\)m, 2084 \(\mu\)m mustard)

(a) \(t = 0.005m, (U_0 - U_{mf}) = 0.048 \text{ m/s}\)

(b) \(t = 0.01m, (U_0 - U_{mf}) = 0.08 \text{ m/s}\)

(c) \(t = 0.01m, (U_0 - U_{mf}) = 0.128 \text{ m/s}\)

5.16 Chord length variation based on measurement locations

5.17 Probability bubble distribution function vs chord length and excess gas
velocities (U_0-U_{mf})
(450 µm resin, $t = 0.015$m, $H_s = 0.25$m, sensor location = 0.12m)

5.18 Probability bubble distribution function vs chord length and excess gas velocities (U_0-U_{mf})
(350 µm sand, $t = 0.01$m, $H_s = 0.25$m, sensor location = 0.15m)

5.19 Probability bubble distribution function vs chord length and sensor locations
(256 µm glass-beads, $t = 0.01$m, $H_s = 0.21$m, (U_0-U_{mf}) = 0.112 m/s)

5.20 Probability bubble distribution function vs chord length and sensor locations
(780 µm resin, $t = 0.005$m, $H_s = 0.25$m, (U_0-U_{mf}) = 0.08 m/s)

5.21 Probability bubble distribution function vs chord length and sensor locations
(250 µm sand, $t = 0.005$m, $H_s = 0.21$m, (U_0-U_{mf}) = 0.192 m/s)

5.22 Probability bubble distribution function vs chord length and static bed heights (H_s)
(256 µm glass-beads, $t = 0.005$m, sensor location = 0.18m, (U_0-U_{mf}) = 0.192 m/s)

5.23 Probability bubble distribution function vs chord length and static bed heights (H_s)
(256 µm glass-beads, $t = 0.01$m, sensor location = 0.21$m, ($U_0-U_{mf}$) = 0.096 m/s)

5.24 Probability bubble distribution function vs chord length and static bed heights (H_s)
(1002 µm mustard, $t = 0.005$m, sensor location = 0.21$m, ($U_0-U_{mf}$) = 0.224 m/s)

5.25 Probability bubble distribution function vs chord length and bed thickness (t)
(350 µm sand, sensor location = 0.15m, $H_s = 0.29$m (U_0-U_{mf}) = 0.064 m/s)

5.26 Probability bubble distribution function vs chord length and bed thickness (t)
(350 µm sand, sensor location = 0.18m, $H_s = 0.29$m (U_0-U_{mf}) = 0.064 m/s)

XII
5.27 Probability bubble distribution function vs chord length and bed thickness
(250 μm sand, sensor location = 0.15m, \(H_s = 0.29\) m \((U_o - U_{mf}) = 0.048\) m/s)

5.28 Probability bubble distribution function vs chord length and bed thickness
(250 μm sand, sensor location = 0.18m, \(H_s = 0.29\) m \((U_o - U_{mf}) = 0.048\) m/s)

5.29 Standard 180° bubble shapes with PDF

5.30 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.15m,
\((U_o - U_{mf}) = 0.044\) m/s, error = 18.8%)

5.31 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.15m,
\((U_o - U_{mf}) = 0.044\) m/s, error = 19.8%)

5.32 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.15m,
\((U_o - U_{mf}) = 0.044\) m/s, error = 21.67%)

5.33 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.15m,
\((U_o - U_{mf}) = 0.066\) m/s, error = 32%)

5.34 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.15m,
\((U_o - U_{mf}) = 0.066\) m/s, error = 32.43%)

5.35 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.15m,
\((U_o - U_{mf}) = 0.066\) m/s, error = 33.10%)

5.36 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.18m,
\((U_o - U_{mf}) = 0.066\) m/s, error = 32.23%)

5.37 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, \(t = 0.015m\), \(H_s = 0.21\) m, sensor location = 0.18m,
\((U_o - U_{mf}) = 0.066\) m/s, error = 32.37%)

XIII
5.38 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, t = 0.015m, Hs = 0.21m, sensor location = 0.18m,
(Uo-Umf) = 0.066 m/s, error = 32.77%)

5.39 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, t = 0.015m, Hs = 0.21m, sensor location = 0.15m,
(Uo-Umf) = 0.11 m/s, error = 23.22%)

5.40 Comparison of experimental and generated PDF and bubble shape
(256 μm glass-beads, t = 0.015m, Hs = 0.21m, sensor location = 0.15m,
(Uo-Umf) = 0.11 m/s, error = 23.82%)

5.41 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.064 m/s, error = 33.6%)

5.42 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.064 m/s, error = 33.97%)

5.43 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.112 m/s, error = 13.38%)

5.44 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.112 m/s, error = 13.38%)

5.45 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.112 m/s, error = 14.10%)

5.46 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.16 m/s, error = 17.58%)

5.47 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.16 m/s, error = 17.58%)

5.48 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01m, Hs = 0.29m, sensor location = 0.21m,
(Uo-Umf) = 0.16 m/s, error = 18.82%)

XIV
5.49 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01 m, Hs = 0.29 m, sensor location = 0.18 m,
(Uo - Umf) = 0.16 m/s, error = 17.14%)

5.50 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01 m, Hs = 0.29 m, sensor location = 0.18 m,
(Uo - Umf) = 0.16 m/s, error = 18.27%)

5.51 Comparison of experimental and generated PDF and bubble shape
(220 μm resin, t = 0.01 m, Hs = 0.29 m, sensor location = 0.18 m,
(Uo - Umf) = 0.16 m/s, error = 19.97%)

6.1 Schematic view of the experimental set-up used for pressure fluctuation
analysis

6.2 Power spectrum of pressure time series at varying excess gas velocities
(Uo - Umf) (220 μm resin, t = 0.01 m, Hs = 0.25 m, sensor location = 0.09 m)
(a) (Uo - Umf) = 0.00083 m/s
(b) (Uo - Umf) = 0.00249 m/s
(c) (Uo - Umf) = 0.00417 m/s
(d) (Uo - Umf) = 0.0075 m/s

6.3 Effect of sensor location on transition point
(640 μm glass-beads, t = 0.01 m, Hs = 0.29 m sensor location = 0 m)
(a) K and D2 vs Uo/Umf
(b) K and λmax vs Uo/Umf
(c) λmax and D2 vs Uo/Umf

6.4 Effect of sensor location on transition point
(640 μm glass-beads, t = 0.01 m, Hs = 0.29 m, sensor location = 0.09 m)
(a) K and D2 vs Uo/Umf
(b) K and λmax vs Uo/Umf
(c) λmax and D2 vs Uo/Umf

6.5 Effect of sensor location on transition point
(640 μm glass-beads, t = 0.01 m, Hs = 0.29 m, sensor location = 0.18 m)
(a) K and D2 vs Uo/Umf
(b) K and λmax vs Uo/Umf
(c) λmax and D2 vs Uo/Umf

6.6 Effect of sensor location on transition point
(640 μm glass-beads, t = 0.01m, H_s=0.29m, sensor location= 0.27 m)
(a) K and D_2 vs U_{o}/U_{mf}
(b) K and \lambda_{max} vs U_{o}/U_{mf}
(c) \lambda_{max} and D_2 vs U_{o}/U_{mf}

6.7 Effect of particle size on transition point

(460 μm glass-beads, t = 0.01m, H_s=0.29m, sensor location= 0.18 m)
(a) K and D_2 vs U_{o}/U_{mf}
(b) K and \lambda_{max} vs U_{o}/U_{mf}
(c) \lambda_{max} and D_2 vs U_{o}/U_{mf}

6.8 Effect of particle size on transition point

(350 μm sand, t = 0.01m, H_s=0.29m, sensor location= 0.09 m)
(a) K and D_2 vs U_{o}/U_{mf}
(b) K and \lambda_{max} vs U_{o}/U_{mf}
(c) \lambda_{max} and D_2 vs U_{o}/U_{mf}

6.9 Effect of particle size on transition point

(250 μm sand, t = 0.01m, H_s=0.29m, sensor location= 0.09 m)
(a) K and D_2 vs U_{o}/U_{mf}
(b) K and \lambda_{max} vs U_{o}/U_{mf}
(c) \lambda_{max} and D_2 vs U_{o}/U_{mf}

6.10 Effect of particle density on transition point

(220 μm resin, t = 0.01m, H_s=0.29m, sensor location= 0.09 m)
(a) K and D_2 vs U_{o}/U_{mf}
(b) K and \lambda_{max} vs U_{o}/U_{mf}
(c) \lambda_{max} and D_2 vs U_{o}/U_{mf}

6.11 Absolute pressure time series plot for varying U_{o}/U_{mf}

6.12 Reconstruction of attractor from pressure time series data

(250 μm sand, t = 0.01m, H_s=0.25m, sensor location= 0.18 m)

6.13 Reconstruction of attractor from pressure time series data

(220 μm resin, t = 0.01m, H_s=0.25m, sensor location= 0.18 m)

6.14 Effect of 3-D rectangular fluidized bed for FCC catalyst on transition point (150 μm catalyst, t = 0.03m, H_s= 0.25m, sensor location = 0.18 m)
(a) K and D_2 vs U_{o}/U_{mf}
(b) K and \lambda_{max} vs U_{o}/U_{mf}
6.15 Pressure fluctuation time series at varying U_o/U_{inf}
(780 μm resin, $t = 0.01$m, $H_s=0.29$m)
(a) sensor location = 0.09m
(b) sensor location = 0.18m
(c) sensor location = 0.27m

6.16 Power spectral density (PSD) at varying sensor locations
(350 μm sand, $t = 0.01$m, $H_s=0.25$m, $U_o-U_{inf} = 0.048$ m/s)

6.17 Coherent output PSD ($\text{COP}_{xy}(f)$) at varying sensor locations
(350 μm sand, $t = 0.01$m, $H_s=0.25$m, $U_o-U_{inf} = 0.048$ m/s)

6.18 Maximum amplitude of pressure vs sensor location at varying (U_o-U_{inf})
(350 μm sand, $t = 0.01$m, $H_s=0.25$m)

6.19 Incoherent output PSD ($\text{IOP}_{xy}(f)$) at varying sensor locations
(350 μm sand, $t = 0.01$m, $H_s=0.25$m, $U_o-U_{inf} = 0.048$ m/s)

6.20 The incoherent standard deviation(σ_{xy}) vs sensor locations at varying (U_o-U_{inf})
(350 μm sand, $t = 0.01$m, $H_s=0.25$m)

6.21 Parity plot of measured bubble size (pr analysis) vs measured bubble size
(image analysis) at varying (U_o-U_{inf})
(350 μm sand, $t = 0.01$m, $H_s=0.25$m)

6.22 Power spectral density (PSD) at varying sensor locations
(460 μm glass-beads, $t = 0.01$m, $H_s=0.25$m, $U_o-U_{inf} = 0.049$ m/s)

6.23 Coherent output PSD ($\text{COP}_{xy}(f)$) at varying sensor locations
(460 μm glass-beads, $t = 0.01$m, $H_s=0.25$m, $U_o-U_{inf} = 0.049$ m/s)

6.24 Incoherent output PSD ($\text{IOP}_{xy}(f)$) at varying sensor locations
(460 μm glass-beads, $t = 0.01$m, $H_s=0.25$m, $U_o-U_{inf} = 0.049$ m/s)

6.25 The incoherent standard deviation(σ_{xy}) vs sensor locations at varying (U_o-U_{inf})
(460 μm glass-beads, $t = 0.01$m, $H_s=0.25$m)

6.26 Parity plot of measured bubble size (pr analysis) vs measured bubble size
(image analysis) at varying (U_o-U_{inf})
(460 μm glass-beads, $t = 0.01$m, $H_s=0.25$m)

6.27 Power spectral density (PSD) at varying sensor locations
(450 μm resin, $t = 0.01$m, $H_s=0.25$m, $U_o-U_{inf} = 0.048$ m/s)

6.28 Coherent output PSD ($\text{COP}_{xy}(f)$) at varying sensor locations

XVII
(450 μm resin, $t = 0.01m$, $H_s = 0.25m$, $U_o-U_{mf} = 0.048$ m/s)

6.29 Incoherent output PSD ($IOP_{xy}(f)$) at varying sensor locations

(450 μm resin, $t = 0.01m$, $H_s = 0.25m$, $U_o-U_{mf} = 0.048$ m/s)

6.30 The incoherent standard deviation(σ_{xy}) vs sensor locations at varying

(450 μm resin, $t = 0.01m$, $H_s = 0.25m$)

6.31 Parity plot of measured bubble size (pr analysis) vs measured bubble size (image analysis) at varying (U_o-U_{mf})(450 μm resin, $t = 0.01m$, $H_s = 0.25m$)

7.1 Parity plot of measured bubble size (pr analysis) vs measured bubble size (image analysis) at varying (U_o-U_{mf})

(450 μm resin, $t = 0.01m$, $H_s = 0.25m$, $U_o-U_{raf} = 0.048$ m/s)

7.1 Parity plot of measured bubble size (pr analysis) vs measured bubble size (image analysis) at varying (U_o-U_{mf})

(350 μm sand, 460 μm glass-beads, 450 μm resin)

F1 Original absolute pressure time series

F2 Modified absolute pressure time series