Table of Contents

Chapter One

1. Introduction 1

Chapter Two

2. Review of Literature 5

2.1. Bioplastics 5
2.2. Molecular structure of PHA 6
2.3. Properties of PHAs 7
2.4. Industrial production of PHAs and its market 9
2.4.1. PHA production by wild bacterial strains 14
2.4.1.1. *Ralstonia eutropha* 15
2.4.1.2. *Alcaligenes latus* 15
2.4.1.3. Methylotrophs 16
2.4.1.4. *Pseudomonas* spp. 16
2.4.1.5. *Bacillus* spp. 16
2.4.2. Biosynthesis of short-chain-length PHA (scl-PHA) 17
2.4.3. Biosynthesis of medium-chain-length PHA (mcl-PHA) 17
2.5. Genes encoding PHA synthases for PHA biosynthesis 18
2.5.1. PhaC (PHA synthase) 18
2.5.2. PhaA gene (β Ketoacyl CoA thiolase) 19
2.5.3. PhaB (NADPH dependant acetoacetyl CoA reductase) 20
2.5.4. PhaG (R) 3 hydroxyacyl ACP CoA transferase) 20
2.5.5. PhaJ (R)-Enoyl CoA hydratase 20
2.6. Industrial production of PHA 21
2.7. Extraction of PHB and other PHAs 22
2.8. Analysis of PHB and other PHAs 23
2.9. Current and potential applications 25
2.9.1. Medical and pharmaceutical applications 25
2.9.2. Agricultural and food applications 25
2.9.3. Biodegradable commodity packaging 26
Chapter Three

3. Materials and methods

3.1. Chemicals

3.2. Collection of sample

3.3. Isolation, screening and identification of PHB producing bacteria

3.4. Pure cultures

3.5. Morphological characterization

3.6. Microscopic examination

3.6.i. Gram’s staining

3.6.ii. Slide method - staining with Sudan black B

3.7. Biochemical characterization

3.7. i. Carbohydrate fermentation test

3.7. ii. Starch hydrolysis

3.7. iii. Catalase test

3.7. iv. Voges Proskauer test

3.7. v. Urease test

3.7. vi. Oxidase test

3.7. vii. Gelatin liquefaction

3.7. viii. Motility test

3.8. Identification of bacterial isolate by 16 S rRNA sequencing

3.8. a. DNA extraction

3.8. b. Agarose gel electrophoresis

3.8. c. Identification of isolated bacterial strains

3.8. d. Purification of PCR product

3.8. e. Construction of phylogenetic tree

3.8. e. (i) Sequence data analysis

3.8. e. (ii) Multiple sequence alignment

3.8. e. (iii) Construction of phylogenetic tree

3.9. PHB production in N₂ limited mineral salt medium

3.10. PHB production in nitrogen limited mineral salt medium with different industrial waste as nitrogen source
3.11. PHB production in different industrial wastes 36
3.12. Extraction and estimation of PHB 37
3.13. Extraction of PHB in pure form 37
3.14. Qualitative analysis of PHB 38
 3.14.1. UV Spectrophotometry 38
 3.14.2. Fourier transmission-Infrared analysis 38
 3.14.3. 1H NMR analysis 38
3.15. Estimation of cations and anions 39
3.15.1. Determination of chemical oxygen demand (COD) 39
3.16. Statistical analysis 39

Chapter Four

4. Results 40
4.1. Collection, isolation, cultivation and screening of PHB producing microorganisms 40
4.2. Identification of PHB producing bacteria 40
 4.2.1. Biochemical methods 40
 4.2.2. Identification of PHB producers by 16s rRNA sequencing 42
4.3. Production of PHB in shake flask cultures 42
4.4. Influence of nitrogen and phosphorous on PHB production 43
 4.4.1. NLMSB Medium only 43
 4.4.2. NLMSB with reduced nitrogen concentration 43
 4.4.3. NLMSB with reduced phosphorous concentration 43
 4.4.4. NLMSB with reduced nitrogen and phosphorous concentration 44
 4.4.5. NLMSB without nitrogen and phosphorous 44
4.5. Optimization studies 44
 4.5.1. Media optimization 44
 4.5.1.1. Optimization of nitrogen concentration 44
 4.5.1.2. Optimization of phosphorous concentration 45
 4.5.2. Optimization of carbon source 46
 4.5.2.1. NLMSB with reduced nitrogen and phosphorous concentration 46
 4.5.2.2. NLMSB without nitrogen and phosphorous 47
 4.5.2.3. Cationic concentrations 48
4.5.2.4. Anionic concentration

4.6. UV Spectrophotometry

4.7. FT – IR spectrum analysis

4.8. 1H NMR Spectral Analysis

Chapter Five

5. Discussion

5.1. Collection of samples from wastewater sludge, isolation and cultivation of PHB producing microorganisms

5.2. Screening, identification and PHB producing capability of the isolates

5.2.1. UV-Spectrophotometry

5.2.2. FT-IR Spectra

5.2.3. 1H NMR Spectral analysis

5.3. Extraction and estimation of PHB

5.4. Optimization studies

5.4.1. Cation and anion concentrations

5.4.2. Influence of nitrogen and phosphorous on PHB production

5.4.3. Influence of aeration on PHB production

Chapter Six

6. Summary

Appendix

I Media and Reagent Preparations

II List of papers published

i. Optimization of Poly β-Hydroxy Butyrate Production by Alcaligenes Latus MTCC2311 using Central Composite Design

ii. Optimization of Bacterial Poly – β – Hydroxy Butyrate (PHB) Production from Different Industrial Waste using Central Composite Design

III NCBI Sequence Submission

i. Pseudomonas sp. - GQ505367

ii. Pseudomonas sp. - GQ505368

iii. Arthrobacter sp. - GQ505369

iv. Aeromonas sp. - GQ505370

v. Bacillus sp. - KC508107
List of Tables

Table 4.1. Morphological and biochemical characteristics of the isolates.

Table 4.2.a. PHB production by B1, B2 and B3 strains in NLMS medium supplemented with different industrial waste.

Table 4.2.b. PHB production by B4 and B5 strains in NLMS medium supplemented with different industrial waste.

Table 4.2.c. PHB production by *A. latus* (MTCC 2309 and 2311) and *A. eutrophus* (MTCC 1285) strains in NLMS medium supplemented with different industrial waste.

Table 4.2.d. PHB production by strains B1, B2 and B3 in different industrial wastes.

Table 4.2.e. PHB production by strains B4 and B5 in different industrial wastes.

Table 4.2.f. PHB production by strains *A. latus* (MTCC 2309 and 2311) and *A. eutrophus* (MTCC 1285) in different industrial wastes.

Table 4.3.a. Influence of nitrogen and phosphorus for the production of PHB by B1, B2 and B3 strains.

Table 4.3.b. Influence of nitrogen and phosphorus for the production of PHB by B4 and B5 strains.

Table 4.3.c. Influence of nitrogen and phosphorus for the production of PHB by *A. latus* (MTCC 2309 and 2311) and *A. eutrophus* (MTCC 1285) strains.

Table 4.4.a. Optimization of nitrogen concentration for the production of PHB in NLMS medium by B1 strain.

Table 4.4.b. Optimization of nitrogen concentration for the production of PHB in NLMS medium by B2 strain.

Table 4.4.c. Optimization of nitrogen concentration for the production of PHB in NLMS medium by B3 strain.

Table 4.4.d. Optimization of nitrogen concentration for the production of PHB in NLMS medium by B4 strain.

Table 4.4.e. Optimization of nitrogen concentration for the production of PHB in NLMS medium by B5 strain.

Table 4.4.f. Optimization of nitrogen concentration for the production of PHB in NLMS medium by *A. latus* (MTCC 2309).
Table 4.4.g. Optimization of nitrogen concentration for the production of PHB in NLMS medium by *A. latus* (MTCC 2311).

Table 4.4.h. Optimization of nitrogen concentration for the production of PHB in NLMS medium by *A. eutrophus* (MTCC 1285).

Table 4.5.a. Optimization of phosphorous concentration for the production of PHB in NLMS medium by B1 strain.

Table 4.5.b. Optimization of phosphorous concentration for the production of PHB in NLMS medium by B2 strain.

Table 4.5.c. Optimization of phosphorous concentration for the production of PHB in NLMS medium by B3 strain.

Table 4.5.d. Optimization of phosphorous concentration for the production of PHB in NLMS medium by B4 strain.

Table 4.5.e. Optimization of phosphorous concentration for the production of PHB in NLMS medium by B5 strain.

Table 4.5.f. Optimization of phosphorous concentration for the production of PHB in NLMS medium by *A. latus* (MTCC 2309).

Table 4.5.g. Optimization of phosphorous concentration for the production of PHB in NLMS medium by *A. latus* (MTCC 2311).

Table 4.5.h. Optimization of phosphorous concentration for the production of PHB in NLMS medium by *A. eutrophus* (MTCC 1285).

Table 4.6.a. PHB production by strains B1, B2 and B3 in modified nitrogen limited mineral salt medium with different concentrations of industrial wastes.

Table 4.6.b. PHB production by strains B4 and B5 in modified nitrogen limited mineral salt medium with different concentrations of industrial wastes.

Table 4.6.c. PHB production by strains *A. latus* (MTCC 2309 and 2311) and *A. eutrophus* (MTCC 1285) in modified nitrogen limited mineral salt medium with different concentrations of industrial wastes.

Table 4.7.a. Profiles of COD and PHB production by B1, B2 and B3 strains in nitrogen limited mineral salt medium with different industrial wastes.

Table 4.7.b. Profiles of COD and PHB production by B4 and B5 strains in nitrogen limited mineral salt medium with different industrial wastes.

Table 4.7.c. Profiles of COD and PHB production by *A. latus* (MTCC 2309 and 2311) and *A. eutrophus* (MTCC 1285) strains in nitrogen limited mineral salt medium with different industrial wastes.
Table 4.8.a.	Influence of cations and anions for the production of PHB by B1 strain in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.b.	Influence of cations and anions for the production of PHB by B2 strain in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.c.	Influence of cations and anions for the production of PHB by B3 strain in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.d.	Influence of cations and anions for the production of PHB by B4 strain in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.e.	Influence of cations and anions for the production of PHB by B5 strain in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.f.	Influence of cations and anions for the production of PHB by *Alcaligenes eutrophus* (MTCC 1285) in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.g.	Influence of cations and anions for the production of PHB by *A. latus* (MTCC 2309) in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.h.	Influence of cations and anions for the production of PHB by *A. latus* (MTCC 2311) in nitrogen limited mineral salt medium with different concentrations of sesame oil waste as substrate under different conditions.
Table 4.8.i.	Influence of cations and anions for the production of PHB by B1 strain in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.
Table 4.8.j.	Influence of cations and anions for the production of PHB by B2 strain in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.
Table 4.8.k.	Influence of cations and anions for the production of PHB by B3 strain in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.
Table 4.8.l.	Influence of cations and anions for the production of PHB by B4 strain in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.
Table 4.8.m. Influence of cations and anions for the production of PHB by B5 strain in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.

Table 4.8.n. Influence of cations and anions for the production of PHB by *A. eutrophus* (MTCC 1285) in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.

Table 4.8.o. Influence of cations and anions for the production of PHB by *A. latus* (MTCC 2309) in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.

Table 4.8.p. Influence of cations and anions for the production of PHB by *A. latus* (MTCC 2311) in nitrogen limited mineral salt medium with different concentrations of sago waste as substrate under different conditions.

Table 4.8.q. Influence of cations and anions for the production of PHB by B1 strain in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.

Table 4.8.r. Influence of cations and anions for the production of PHB by B2 strain in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.

Table 4.8.s. Influence of cations and anions for the production of PHB by B3 strain in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.

Table 4.8.t. Influence of cations and anions for the production of PHB by B4 strain in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.

Table 4.8.u. Influence of cations and anions for the production of PHB by B5 strain in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.

Table 4.8.v. Influence of cations and anions for the production of PHB by *A. eutrophus* (MTCC 1285) in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.

Table 4.8.w. Influence of cations and anions for the production of PHB by *A. latus* (MTCC 2309) in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.

Table 4.8.x. Influence of cations and anions for the production of PHB by *A. latus* (MTCC 2311) in nitrogen limited mineral salt medium with different concentrations of paper waste as substrate under different conditions.
Table 4.8.y. Influence of cations and anions for the production of PHB by B1 strain in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.8.z. Influence of cations and anions for the production of PHB by B2 strain in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.8.aa. Influence of cations and anions for the production of PHB by B3 strain in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.8.ab. Influence of cations and anions for the production of PHB by B4 strain in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.8.ac. Influence of cations and anions for the production of PHB by B5 strain in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.8.ad. Influence of cations and anions for the production of PHB by A. eutrophus (MTCC 1285) in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.8.ae. Influence of cations and anions for the production of PHB by A. latus (MTCC 2309) in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.8.af. Influence of cations and anions for the production of PHB by A. latus (MTCC 2311) in nitrogen limited mineral salt medium with different concentrations of molasses as substrate under different conditions.

Table 4.9. Comparision of group frequencies of PHB from Sigma and from the isolated strains and MTCC cultures.
List of Plates

Plate 1. Isolation and identification of PHB producing bacteria.
Plate 2. Staining of isolated PHB producing microorganisms by Sudan Black B
Plate 3. Microscopic observation of isolated PHB producing microorganisms.
Plate 4. Influence of nitrogen and phosphorous on isolated microorganisms and MTCC cultures in aerobic condition
Plate 5. Optimization of nitrogen concentration for the production of PHB by Pseudomonas sp. in aerobic, semiaerobic and anaerobic condition.
Plate 6. Optimization of nitrogen concentration for the production of PHB by Arthrobacter sp. and Aeromonas sp. in aerobic, semiaerobic and anaerobic condition.
Plate 7. Optimization of nitrogen concentration for the production of PHB by Bacillus sp. and Alcaligenes eutrophus (MTCC 1285) in aerobic, semiaerobic and anaerobic condition.
Plate 8. Optimization of nitrogen concentration for the production of PHB by the A. latus (MTCC 2309 and 2311) in aerobic, semiaerobic and anaerobic condition.
Plate 9. Optimization of phosphorous concentration for the production of PHB by Pseudomonas sp. in aerobic, semiaerobic and anaerobic condition.
Plate 10. Optimization of phosphorous concentration for the production of PHB by Arthrobacter sp. and Aeromonas sp. in aerobic, semiaerobic and anaerobic condition.
Plate 11. Optimization of phosphorous concentration for the production of PHB by Bacillus sp. and Alcaligenes eutrophus (MTCC 1285) in aerobic, semiaerobic and anaerobic condition.
Plate 12. Optimization of phosphorous concentration for the production of PHB by A. latus (MTCC 2309 and 2311) in aerobic, semiaerobic and anaerobic condition.
Plate 13. Production of PHB by Pseudomonas sp. in different concentrations of sago waste under aerobic, semiaerobic and anaerobic condition.
Plate 14. Production of PHB by Arthrobacter sp. and Aeromonas sp. in different concentrations of sago waste under aerobic, semiaerobic and anaerobic condition.
Plate 15. Production of PHB by Bacillus sp. and Alcaligenes eutrophus (MTCC 1285) in different concentrations of sago waste under aerobic, semiaerobic and anaerobic condition.
Plate 16. Production of PHB by A. latus (MTCC 2309 and 2311) in different concentrations of sago waste under aerobic, semiaerobic and anaerobic condition

Plate 17. Production of PHB by *Pseudomonas* sp. in different concentrations of seasame oil waste under aerobic, semiaerobic and anaerobic condition

Plate 18. Production of PHB by *Arthrobacter* sp. and *Aeromonas* sp. in different concentrations of seasame oil waste under aerobic, semiaerobic and anaerobic condition

Plate 19. Production of PHB by *Bacillus* sp. and *Alcaligenes eutrophus* (MTCC 1285) in different concentrations of seasame oil waste under aerobic, semiaerobic and anaerobic condition

Plate 20. Production of PHB by A. latus (MTCC 2309 and 2311) in different concentrations of seasame oil waste under aerobic, semiaerobic and anaerobic condition

Plate 21. Production of PHB by *Pseudomonas* sp. in different concentrations of molasses under aerobic, semiaerobic and anaerobic condition

Plate 22. Production of PHB *Arthrobacter* sp. and *Aeromonas* sp. in different concentrations of molasses under aerobic, semiaerobic and anaerobic condition

Plate 23. Production of PHB by *Bacillus* sp. and *Alcaligenes eutrophus* (MTCC 1285) in different concentrations of molasses under aerobic, semiaerobic and anaerobic condition

Plate 24. Production of PHB by *Alcaligenes latus* (MTCC 2309 and 2311) in different concentrations of molasses under aerobic, semiaerobic and anaerobic condition

Plate 25. Production of PHB by *Pseudomonas* sp. in different concentrations of paper waste under aerobic, semiaerobic and anaerobic condition

Plate 26. Production of PHB by *Arthrobacter* sp. and *Aeromonas* sp. in different concentrations of paper waste under aerobic, semiaerobic and anaerobic condition

Plate 27. Production of PHB by *Bacillus* sp. and *Alcaligenes eutrophus* (MTCC 1285) in different concentrations of paper waste under aerobic, semiaerobic and anaerobic condition

Plate 28. Production of PHB by *Alcaligenes latus* (MTCC 2309 and 2311) in different concentrations of paper waste under aerobic, semiaerobic and anaerobic condition