Chapter 2

On Contra rw-Continuous Functions

2.1 Introduction

Dontchev [15] introduced the notions of contra-continuity and strong S-closedness in topological spaces. He defined a function $f : X \to Y$ to be contra-continuous if the preimage of every open set of Y is closed in X. In [15], he obtained very interesting and important results concerning contra-continuity, compactness, S-closedness and strong S-closedness. Recently a new weaker form of this class of functions called contra-semicontinuous function is introduced and investigated by Dontchev and Noiri [16]. They also introduced the notion of RC-continuity [16] between topological spaces which is weaker than contra-continuity and stronger than B-continuity [68]. In 1999, Jafari [25] introduced and investigated a new class of functions called contra-super-continuous functions which lies between classes of RC-continuous functions and contra-continuous functions.
In section 2 of this chapter is to introduce the notion of contra \(rw \)-continuous functions and to obtain fundamental properties of contra \(rw \)-continuous functions.

In section 3 of this chapter, the relationship between contra \(rw \)-continuity and other related functions are discussed.

2.2 Contra \(rw \)-Continuous Function and its Relationship With Other Functions

Definition 2.2.1 A function \(f : X \to Y \) is called **contra \(rw \)-continuous** if \(f^{-1}(V) \) is \(rw \)-closed set in \(X \) for every open set \(V \) of \(Y \).

Theorem 2.2.2 The following are equivalent for a function \(f : X \to Y \)

1. \(f \) is contra \(rw \)-continuous,
2. the inverse image of every closed set of \(Y \) is \(rw \)-open.

Proof. Let \(U \) be any closed set in \(Y \). Since \(Y \setminus U \) is open, then by (1) it follows that \(f^{-1}(Y \setminus U) = X \setminus f^{-1}(U) \) is \(rw \)-closed. This shows that, \(f^{-1}(U) \) is \(rw \)-open in \(X \). Converse is similar. \[\blacksquare \]

Theorem 2.2.3 Suppose that \(RWC(X) \) is closed under arbitrary intersections. Then the following are equivalent for a function \(f : X \to Y \):

1. \(f \) is contra \(rw \)-continuous,
2. the inverse image of every closed set of \(Y \) is \(rw \)-open,
3. for each \(x \in X \) and each closed set \(B \) in \(Y \) with \(f(x) \in B \), there exists a \(rw \)-open set \(A \) in \(X \) such that \(x \in A \) and \(f(A) \subset B \),

25
Theorem 2.2.4
Suppose that
(4) \(f(rw-cl(A)) \subset ker(f(A)) \) for every subset \(A \) of \(X \),
(5) \(rw-cl(f^{-1}(B)) \subset f^{-1}(ker(B)) \) for every subset \(B \) of \(Y \).

Proof. (1) \(\Rightarrow \) (2): Obvious from Theorem 2.2.2.

(1) \(\Rightarrow \) (3) Let \(x \in X \) and \(B \) be a closed set in \(Y \) with \(f(x) \in B \). By (1),
it follows that \(f^{-1}(Y \setminus B) = X \setminus f^{-1}(B) \) is \(rw \)-closed and so \(f^{-1}(B) \) is \(rw \)-open.
Take \(A = f^{-1}(B) \), we obtain \(x \in A \) and \(f(A) \subset B \).

(3) \(\Rightarrow \) (2) Let \(B \) be a closed set in \(Y \) with \(x \in f^{-1}(B) \). Since \(f(x) \in B \), by
(3) there exists a \(rw \)-open set \(A \) in \(X \) containing \(x \) such that \(f(A) \subset B \). It
follows that \(x \in A \subset f^{-1}(B) \). Hence \(f^{-1}(B) \) is \(rw \)-open.

(2) \(\Rightarrow \) (1) Follows from the previous Theorem.

(2) \(\Rightarrow \) (4) Let \(A \) be any subset of \(X \). Let \(y \notin ker(f(A)) \). Then there exists a
closed set \(F \) containing \(y \) such that \(f(A) \cap F = \phi \). Hence we have \(A \cap f^{-1}(F) = \phi \).
Hence, we obtain \(f(rw-cl(A)) \cap F = \phi \) and \(rw-clA \cap f^{-1}(F) = \phi \) and \(y \notin f(rw-
cl(A)) \). Thus \(f(rw-cl(A)) \subset ker(f(A)) \).

(4) \(\Rightarrow \) (5) Let \(B \) be any subset of \(Y \). By (4), \(f(rw-cl(f^{-1}(B))) \subset ker(B) \) and
\(rw-cl(f^{-1}(B)) \subset f^{-1}(ker(B)) \)

(5) \(\Rightarrow \) (1) Let \(B \) be any open set of \(Y \). By (5), \(rw-cl(f^{-1}(B)) \subset f^{-1}(ker(B)) = f^{-1}(B) \) and \(rw-cl(f^{-1}(B)) = f^{-1}(B) \). We obtain that, \(f^{-1}(B) \) is \(rw \)-closed in
\(X \).

Theorem 2.2.4 Suppose that \(X \) and \(Y \) are spaces and \(RWO(X) \) is closed under
arbitrary union. If a function \(f : X \to Y \) is contra \(rw \)-continuous and \(Y \) is regular,
then \(f \) is \(rw \)-continuous.
Proof. Let \(x \) be an arbitrary point of \(X \) and \(V \) be an open set of \(Y \) containing \(f(x) \). Since \(Y \) is regular, there exist an open set \(G \) in \(Y \) containing \(f(x) \) such that \(\text{cl}(G) \subseteq V \). Since \(f \) is contra \(rw \)-continuous, there exist \(U \in RWO(X) \) containing \(x \) such that \(f(U) \subseteq \text{cl}(G) \). Then \(f(U) \subseteq \text{cl}(G) \subseteq V \). Hence, \(f \) is \(rw \)-continuous.

Definition 2.2.5 A space \((X, T)\) is called \(rw-T_{\frac{1}{2}} \) if every \(rw \)-closed set is closed.

Theorem 2.2.6 Let \(f: (X, T) \rightarrow (Y, S) \) be a function. Suppose that \((X, T)\) is a \(rw-T_{\frac{1}{2}} \) space. Then the following are equivalent:

1. \(f \) is contra \(rw \)-continuous,
2. \(f \) is contra \(g \)-continuous,
3. \(f \) is contra continuous.

Proof. The proof is obvious.

Theorem 2.2.7 If a function \(f: X \rightarrow \prod Y_i \) is contra \(rw \)-continuous, then \(p_i \circ f: X \rightarrow Y_i \) is contra \(rw \)-continuous for each \(i \in I \), where \(p_i \) is the projection of \(\prod Y_i \) onto \(Y_i \).

Proof. Let \(V_i \) be any open set of \(Y_i \). Since \(p_i \) is continuous, \(p_i^{-1}(V_i) \) is open in \(\prod Y_i \). Since \(f \) is contra \(rw \)-continuous, \(f^{-1}(p_i^{-1}(V_i)) = (p_i \circ f)^{-1}(V_i) \in RW(X) \).

This shows that \(p_i \circ f \) is contra \(rw \)-continuous for each \(i \in I \).

Definition 2.2.8 A topological space \((X, T)\) is said to be locally \(rw \)-indiscrete if every \(rw \)-open set of \(X \) is closed in \(X \).
Proposition 2.2.9 Let \(f : (X, T) \to (Y, S) \) be a function. If \(f \) is contra \(rw \)-continuous and \((X, T) \) is locally \(rw \)-indiscrete, then \(f \) is continuous.

Theorem 2.2.10 Let \(f : X \to Y \) and \(g : Y \to Z \) be functions. Then, the following properties hold.

1. If \(f \) is \(rw \)-irresolute and \(g \) is contra \(rw \)-continuous, then \(g \circ f : X \to Z \) is contra \(rw \)-continuous.

2. If \(f \) is contra \(rw \)-continuous and \(g \) is continuous, then \(g \circ f : X \to Z \) is \(rw \)-continuous.

3. If \(f \) is contra \(rw \)-continuous and \(g \) is \(RC \)-continuous, then \(g \circ f : X \to Z \) is \(rw \)-continuous.

4. If \(f \) is \(rw \)-continuous and \(g \) is contra continuous, then \(g \circ f : X \to Z \) is contra \(rw \)-continuous.

Theorem 2.2.11 Suppose that \(RWC(Y) \) is closed under arbitrary intersections. If \(f : X \to Y \) is a surjective \(rw \)-open function and \(g : Y \to Z \) is a function such that \(g \circ f : X \to Z \) is contra \(rw \)-continuous, then \(g \) is contra \(rw \)-continuous.

Proof. Suppose that \(x \) and \(y \) are two points in \(X \) and \(Y \) respectively, such that \(f(x) = y \). Let \(B \in C(Z, (g \circ f)(x)) \). Then there exits a \(rw \)-open set \(A \) in \(X \) containing \(x \) such that \(g(f(A)) \subset B \). Since \(f \) is \(rw \)-open, \(f(A) \) is a \(rw \)-open in \(Y \) containing \(y \) such that \(g(f(A)) \subset B \). This implies that \(g \) is contra \(rw \)-continuous.

Corollary 2.2.12 Let \(f : X \to Y \) be a surjective \(rw \)-irresolute and \(rw \)-open function and let \(g : Y \to Z \) be a function. Suppose that \(RWC(Y) \) is closed under
arbitrary intersection. Then \(g \circ f : X \to Z \) is contra \(rw \)-continuous if and only if \(g \) is contra \(rw \)-continuous.

Proof. Follows from Theorem 2.2.10 and 2.2.11.

2.3 Properties of Contra \(rw \)-Continuous Functions

Definition 2.3.1 The \(rw \)-frontier of a subset \(A \) of a space \(X \) is given by \(rw-fr(A) = rw-cl(A) \cap rw-cl(X \setminus A) \).

Theorem 2.3.2 Let the collection of all \(rw \)-closed sets of a space \((X, \tau)\) be closed under arbitrary intersections. The set of all points \(x \in X \) at which a function \(f : (X, \tau) \to (Y, \sigma) \) is not contra \(rw \)-continuous is identical with the union of \(rw \)-frontier of the inverse images of closed sets containing \(f(x) \).

Proof. (\(\Rightarrow \)) Suppose that \(f \) is not contra \(rw \)-continuous at \(x \in X \). Then there exists a closed set \(A \) of \(Y \) containing \(f(x) \) such that \(f(U) \) is not contained in \(A \) for every \(U \in RWO(X) \) containing \(x \). Then \(U \cap (X \setminus f^{-1}(A)) \neq \emptyset \) for every \(U \in RWO(X) \) containing \(x \) and hence \(x \in rw-cl(X \setminus f^{-1}(A)) \). On the other hand, we have \(x \in f^{-1}(A) \subset rw-cl(f^{-1}(A)) \) and hence \(x \in rw-fr(f^{-1}(A)) \).

(\(\Leftarrow \)) Suppose that \(f \) is contra \(rw \)-continuous at \(x \in X \), and let \(A \) be a closed set of \(Y \) containing \(f(x) \). Then there exists \(U \in RWO(X) \) containing \(x \) such that \(U \subset f^{-1}(A) \); hence \(x \in rw-int(f^{-1}(A)) \). Therefore, \(x \notin rw-fr(f^{-1}(A)) \) for each closed set \(A \) of \(Y \) containing \(f(x) \). This completes the proof.

Corollary 2.3.3 Let \(RWC(X) \) be closed under arbitrary intersections. A function \(f : X \to Y \) is not contra \(rw \)-continuous at \(x \) if and only if \(x \in rw-fr(f^{-1}(F)) \)
for some $F \in C(Y, f(x))$.

Definition 2.3.4 A space X is said to be $rw-T_1$ if for each pair of distinct points x and y in X, there exists rw-open sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.

Definition 2.3.5 A space X is said to be $rw-T_2$ if for each pair of distinct points x and y in X, there exists $U \in RWO(X, x)$ and $V \in RWO(X, y)$ such that $U \cap V = \emptyset$.

Theorem 2.3.6 Let X and Y be topological spaces. If

1. for each pair of distinct points x and y in X, there exists a function f of X into Y such that $f(x) \neq f(y)$.
2. Y is an Urysohn space and f is contra rw-continuous at x and y, then X is $rw-T_2$.

Proof. Let x and y be distinct points in X. Then, there exists a Urysohn space Y and a function $f : X \to Y$ such that $f(x) \neq f(y)$ and f is contra rw-continuous at x and y. Let $z = f(x)$ and $v = f(y)$. Then $z \neq v$. We have to prove X is $rw-T_2$ space. Since Y is Urysohn, there exist open sets V and W containing z and v respectively such that $cl(V) \cap cl(W) = \emptyset$. Since f is contra rw-continuous at x and y, then there exists rw-open sets A and B containing x and y, respectively such that, $f(A) \subset cl(V)$ and $f(B) \subset cl(W)$. We have $A \cap B = \emptyset$. Since $cl(V) \cap cl(W) = \emptyset$, hence X is $rw-T_2$.

Corollary 2.3.7 Let $f : X \to Y$ be a contra rw-continuous injection. If Y is an Urysohn space, then it is $rw-T_2$.

30
Definition 2.3.8 A space X is said to be rw-connected if X is not the union of two disjoint nonempty rw-open sets.

Remark 2.3.9 Every rw-connected space is g-connected. The reverse of this implication is not true in general.

Example 2.3.10 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$, Then (X, τ) is g-connected but it is not rw-connected.

Theorem 2.3.11 For a topological space X, the following properties are equivalent:

(1) X is rw-connected,

(2) The only subsets of X which are both rw-open and rw-closed are the empty set ϕ and X,

(3) Each contra rw-continuous function of X into a discrete space Y with at least two points is a constant function.

Proof. (1) \Rightarrow (2) Suppose $A \subset X$ is a proper subset which is both rw-open and rw-closed. Then its complement $X\setminus A$ is also rw-open and rw-closed. Then $X = A \cup (X\setminus A)$ is a disjoint union of two nonempty rw-open sets which contradicts the fact that X is rw-connected. Hence, $A = \phi$ or X.

(2) \Rightarrow (1) Suppose $X = A \cup B$ where $A \cap B = \phi$, $A \neq \phi$, $B \neq \phi$ and A and B are rw-open. Since $A = X\setminus B$, A is rw-closed. But by hypothesis $A = \phi$, which is a contradiction. Hence (1) holds.

(2) \Rightarrow (3) Let $f : X \to Y$ be a contra rw-continuous function where Y is a discrete space with atleast two points. Then $f^{-1}(\{y\})$ is rw-closed and rw-open
for each $y \in Y$ and $X = \{f^{-1}\{\{y\}\} : y \in Y\}$. By hypothesis, $f^{-1}\{\{y\}\} = \phi$ or X. If $f^{-1}\{\{y\}\} = \phi$ for all $y \in Y$, f is not a function. Also there cannot exist more than one $y \in Y$ such that $f^{-1}\{\{y\}\} = X$. Hence, there exists only one $y \in Y$ such that $f^{-1}\{\{y\}\} = X$ and $f^{-1}\{\{y_1\}\} = \phi$ where $y \neq y_1 \in Y$. This shows that f is a constant function.

$(3) \Rightarrow (2)$ Let P be both rw-open and rw-closed in X. Suppose $P \neq \phi$. Let $f : X \to Y$ be a contra rw-continuous function defined by $f(P) = \{a\}$ and $f(X \setminus P) = \{b\}$ where $a \neq b$ and $a, b \in Y$. By hypothesis, f is constant. Therefore, $P = X$.

Theorem 2.3.12 If f is a contra rw-continuous function from a rw-connected space X onto any space Y, then Y is not a discrete space.

Proof. Suppose that Y is discrete. Let A be a proper nonempty clopen subset of Y. Then $f^{-1}(A)$ is a proper nonempty rw-clopen subset of X, which is a contradiction to the fact that X is rw-connected.

Theorem 2.3.13 A space X is rw-connected if every contra rw-continuous function from a space X into any T_0-space Y is constant.

Proof. Suppose that X is not rw-connected and that every contra rw-continuous function from X into Y is constant. Since X is not rw-connected, there exists a proper nonempty rw-clopen subset A of X. Let $Y = \{a, b\}$ and $\tau = \{Y, \phi, \{a\}, \{b\}\}$ be a topology for Y. Let $f : X \to Y$ be a function such that $f(A) = \{a\}$ and $f(X \setminus A) = \{b\}$. Then f is non-constant and contra rw-continuous such that Y is T_0, which is a contradiction. Hence, X must be rw-connected.
Theorem 2.3.14 If \(f : X \to Y \) is a contra \(\text{rw} \)-continuous surjection and \(X \) is \(\text{rw} \)-connected, then \(Y \) is connected.

Proof. Suppose that \(Y \) is not a connected space. There exists nonempty disjoint open sets \(V_1 \) and \(V_2 \) such that \(Y = V_1 \cup V_2 \). Therefore, \(V_1 \) and \(V_2 \) are clopen in \(Y \). Since \(f \) is contra \(\text{rw} \)-continuous, \(f^{-1}(V_1) \) and \(f^{-1}(V_2) \) are nonempty disjoint and \(X = f^{-1}(V_1) \cup f^{-1}(V_2) \). This shows that \(X \) is not \(\text{rw} \)-connected. This contradicts that \(Y \) is not connected. Hence, \(Y \) is connected.

Theorem 2.3.15 Let \(p : X \times Y \to X \) be a projection. If \(A \) is \(\text{rw} \)-closed subset of \(X \), then \(p^{-1}(A) = A \times Y \) is \(\text{rw} \)-closed subset of \(X \times Y \).

Proof. Let \(A \times Y \subset U \) and \(U \) be regular semiopen subset of \(X \times Y \). Then \(U = V \times Y \) for some regular semi open set of \(X \). Since \(A \) is \(\text{rw} \)-closed in \(X \), \(cl(A) \subset V \) and so \(cl(A) \times Y \subset V \times Y = U \), i.e., \(cl(A \times Y) \subset U \). Hence, \(A \times Y \) is \(\text{rw} \)-closed subset of \(X \times Y \).

Proposition 2.3.16 If \(f : X \to Y \) is a \(\text{rw} \)- irresolute surjection and \(X \) is \(\text{rw} \)-connected, then \(Y \) is \(\text{rw} \)-connected.

Proposition 2.3.17 If the product space of two nonempty topological spaces is \(\text{rw} \)-connected, then each factor space is \(\text{rw} \)-connected.

Proof. Let \(X \times Y \) be the product space of the nonempty spaces \(X \) and \(Y \) and \(X \times Y \) be \(\text{rw} \)-connected. The projection \(p : X \times Y \to X \) is \(\text{rw} \)- irresolute and then \(p(X \times Y) = X \) is \(\text{rw} \)-connected. The proof for the space \(Y \) is similar to the case of \(X \).