Chapter 7

New Approaches for Generalized Closed Sets and Maps in Bitopological Spaces

7.1 Introduction

The triple \((X, \tau_1, \tau_2)\) where \(X\) is a set and \(\tau_1\) and \(\tau_2\) are topologies on \(X\) is called a bitopological spaces. Kelly [33] initiated a systematic study of the concept of bitopological spaces in 1963. He generalized the topological concepts to bitopological setting. Following the work of Kelly [33] on the bitopological spaces, various authors, like Arya and Nour [4], Di Maio and Noiri [14], Fukutake [19], Nagaveni [52], Sampath Kumar [61], Reilly [60], Popa [59], Maki [41], Arockiarani [3], Gnanambal [22] and Sheik John [62] have contributed various concepts of topology by considering bitopological spaces. Benchalli and Wali [70] have worked on generalized closed sets, their generalizations and related concepts in general topology.
In section 2 of this chapter, \((i, j)\)-\(Bg\)-closed sets in bitopological space have been introduced and studied. Among many other results it is observed that every \((i, j)\)-\(w\)-closed set is \((i, j)\)-\(Bg\)-closed set which implies \((i, j)\)-\(rg\)-closed set but not conversely.

In section 3 of this chapter, we have introduced \((i, j)\)-\(Bg\)-open sets in bitopological space and study some of their properties. In section 4 of this chapter, we shall use the \((i, j)\)-\(Bg\)-closed subsets of bitopological space \((X, \tau_1, \tau_2)\) to define a new closure operator "\((i, j)\)-\(Bg\)-cl" and thus new topology \(\tau_{Bg}(i, j)\) on the space and shall examine some of the properties of this new topology.

In section 5 of this chapter, a new class of maps called \(D_B(i, j)\)-\(\sigma_k\)-continuous maps in bitopological spaces are introduced and investigated. During this process, some of their properties are obtained. It is found that every \(C(i, j)\)-\(\sigma_k\)-continuous map is \(D_B(i, j)\)-\(\sigma_k\)-continuous which implies \(D_r(i, j)\)-\(\sigma_K\)-continuous but not conversely. Also, we have introduced the concept of \(Bg\)-bi-continuity, \(Bg\)-\(s\)-bi-continuity and pairwise \(Bg\)-irresolute in bitopological spaces and study some of the properties.

Throughout this chapter \((X, \tau_1, \tau_2)\), \((Y, \sigma_1, \sigma_2)\) and \((Z, \eta_1, \eta_2)\) denote nonempty bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned and fixed integers \(i, j, k, e, m, n \in \{1, 2\}\).

7.2 \((\tau_i, \tau_j)\)-\(Bg\)-Closed Sets

In this section we define \((\tau_i, \tau_j)\)-\(Bg\)-closed set, and obtain some of their basic properties.
Definition 7.2.1 Let \(i, j \in \{1, 2\} \) be fixed integers. In a bitopological space \((X, \tau_1, \tau_2)\), a subset \(A \subseteq X \) is said to be \((\tau_i, \tau_j)\)-\textbf{B-generalized closed} (briefly, \((i, j)\)-\textbf{Bg-closed}) set if \(\tau_j\text{-}Bcl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \in \tau_i \) (\(\tau_i \)-open).

We denote the family of all \((i, j)\)-\textbf{Bg-closed} sets in a bitopological space \((X, \tau_1, \tau_2)\) by \(D_B(\tau_i, \tau_j) \) or \(D_B(i, j) \).

Remark 7.2.2 By setting \(\tau_1 = \tau_2 \) in Definition 7.2.1, an \((i, j)\)-\textbf{Bg-closed} set reduces to a \textbf{Bg-closed} set in \(X \).

Theorem 7.2.3 If \(A \) is \((i, j)\)-\textbf{w-closed} subset of \((X, \tau_1, \tau_2)\), then \(A \) is \((i, j)\)-\textbf{Bg-closed}.

Proof. Let \(A \) be a \((i, j)\)-\textbf{w-closed} subset of \((X, \tau_1, \tau_2)\). Let \(U \in O(X, \tau_i) \) be such that \(A \subseteq U \). Since \(O(X, \tau_i) \subseteq SO(X, \tau_i) \), we have \(U \in SO(X, \tau_i) \). Then by hypothesis, \(\tau_j\text{-}cl(A) \subseteq U \). This implies \(\tau_j\text{-}Bcl(A) \subseteq U \). Therefore \(A \) is a \((i, j)\)-\textbf{Bg-closed}.

The converse of this Theorem 7.2.3 need not be true, as seen from the following Example.

Example 7.2.4 Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \), a non open set \(B = \{a, b\} \). Then the subsets \(\{c\}, \{b, c\}, \{c, d\}, \{a, c\}, \{b, d\}, \{a, b, c\}, \{a, c, d\} \) and \(\{a, b, d\} \) are \((1, 2)\)-\textbf{Bg-closed} sets, but not \((1, 2)\)-\textbf{w-closed} sets in the bitopological space \((X, \tau_1, \tau_2)\).

Remark 7.2.5 \((i, j)\)-\textbf{Bg-closed} sets and \((i, j)\)-\textbf{rw-closed} sets are independent as seen from the following Examples.
Example 7.2.6 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$, a non open set $B = \{a, b\}$. Then the subset $\{a, b\}$ is $(1, 2)$-rw-closed sets, but not $(1, 2)$-Bg-closed sets in the bitopological space (X, τ_1, τ_2).

Example 7.2.7 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$, a non open set $B = \{a, b\}$. Then the subsets $\{c\}, \{d\}, \{b, c\}, \{c, d\}, \{a, c\}, \{b, d\}$ and $\{a, c, d\}$ are $(1, 2)$-Bg-closed sets but not $(1, 2)$-rw-closed sets in the bitopological space (X, τ_1, τ_2).

Theorem 7.2.8 If A is (i, j)-Bg-closed subset of (X, τ_1, τ_2), then A is (i, j)-rg-closed.

Proof. Let A be (i, j)-Bg-closed subset of (X, τ_1, τ_2). Let $G \in RO(X, \tau_i)$ be such that $A \subseteq U$. Since $RO(X, \tau_i) \subseteq O(X, \tau_i)$, we have $U \in O(X, \tau_i)$. Then by hypothesis, $\tau_j-Bcl(A) \subseteq U$. This implies $\tau_j-cl(A) \subseteq U$. Therefore A is (i, j)-rg-closed.

The converse of this Theorem 7.2.8 need not be true, as seen from the following Example.

Example 7.2.9 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$, a non open set $B = \{b, c\}$. Then the subset $\{a, b\}$ are $(1, 2)$-rg-closed sets, but not $(1, 2)$-Bg-closed sets in the bitopological space (X, τ_1, τ_2).

Theorem 7.2.10 If A is τ_j-closed subset of a bitopological space (X, τ_1, τ_2), then the set A is (i, j)-Bg-closed.
Proof. Let \(U \in O(X, \tau_i) \ i = \{1, 2\} \) be such that \(A \subseteq U \). Then by hypothesis, \(\tau_j \cdot Bcl(A) = A \), which implies \(\tau_j \cdot Bcl(A) \subseteq U \). Therefore \(A \) is \((i, j)\)-Bg-closed.

The converse of this Theorem 7.2.10 need not be true, as seen from the following Example.

Example 7.2.11 Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}\} \), a non open set \(B = \{b, c\} \). Then the subsets \(\{c\}, \{b, c\}, \{a, d\}, \{a, c\}, \{b, d\}, \{a, b, c\} \) and \(\{a, b, d\} \) are \((1, 2)\)-Bg-closed sets, but not \(\tau_2 \)-closed set in the bitopological space \((X, \tau_1, \tau_2)\).

Theorem 7.2.12 If \(A \) is \((i, j)\)-g-closed subset of a bitopological space \((X, \tau_1, \tau_2)\), then the set \(A \) is \((i, j)\)-Bg-closed.

Proof. Let \(A \) be \((i, j)\)-g-closed subset of \((X, \tau_1, \tau_2)\). Let \(U \in \tau_i \) be such that \(A \subseteq U \). Then by hypothesis, \(\tau_j \cdot cl(A) \subseteq U \). Also \(\tau_j \cdot Bcl(A) \subseteq \tau_j \cdot cl(A) \) which implies \(\tau_j \cdot Bcl(A) \subseteq U \). Therefore \(A \) is \((i, j)\)-Bg-closed. ■

The converse of this Theorem 7.2.12 need not be true, as seen from the following Example.

Example 7.2.13 Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \), a non open set \(B = \{b, c\} \). Then the subsets \(\{a\} \) and \(\{b\} \) are \((1, 2)\)-Bg-closed sets, but not \((1, 2)\)-g-closed sets in the bitopological space \((X, \tau_1, \tau_2)\).

Theorem 7.2.14 If \(A \) is \((i, j)\)-Bg-closed subset of a bitopological space \((X, \tau_1, \tau_2)\), then the set \(A \) is \((i, j)\)-gpr-closed.
Proof. Let A be (i, j)-Bg-closed subset of (X, τ_1, τ_2). Let $U \in RO(X, \tau_i)$ be such that $A \subseteq U$. Since $RO(X, \tau_i) \subseteq O(X, \tau_i)$, we have $G \in O(X, \tau_i)$. Then by hypothesis, $\tau_j - Bcl(A) \subseteq U$. Also $\tau_j - pcl(A) \subseteq \tau_j - Bcl(A)$ which implies $\tau_j - pcl(A) \subseteq U$. Therefore A is (i, j)-gpr-closed.

The converse of this Theorem 7.2.14 need not be true, as seen from the following Example.

Example 7.2.15 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$, a non open set $B = \{b, c\}$. Then the subsets $\{a, b\}$ is $(1, 2)$-gpr-closed set but not $(1, 2)$-Bg-closed set in the bitopological space (X, τ_1, τ_2).

Theorem 7.2.16 If A is (i, j)-wg-closed subset of a bitopological space (X, τ_1, τ_2), then the set A is (i, j)-Bg-closed.

Proof. Let A be (i, j)-wg-closed subset of (X, τ_1, τ_2). Let $U \in O(X, \tau_i)$ be such that $A \subseteq U$. Then by hypothesis, $\tau_j - cl(\tau_i - int(A)) \subseteq U$. Also $\tau_j - Bcl(A) \subseteq \tau_j - cl(\tau_i - int(A))$ which implies $\tau_j - Bcl(A) \subseteq U$. Therefore A is (i, j)-Bg-closed.

The converse of this Theorem 7.2.16 need not be true, as seen from the following Example.

Example 7.2.17 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, a non open set $B = \{b, c\}$. Then the subset $\{a\}$ is $(1, 2)$-Bg-closed set but not $(1, 2)$-wg-closed set in the bitopological space (X, τ_1, τ_2).

89
Theorem 7.2.18 If \(A \) is \((i, j)\)-\(gp\)-closed subset of a bitopological space \((X, \tau_1, \tau_2)\), then the set \(A \) is \((i, j)\)-\(Bg\)-closed.

Proof. Let \(A \) be a \((i, j)\)-\(gp\)-closed subset of \((X, \tau_1, \tau_2)\). Let \(U \in O(X, \tau_i) \) be such that \(A \subseteq U \). Then by hypothesis, \(\tau_j\text{-}pcl(A) \subseteq U \). Also \(\tau_j\text{-}Bcl(A) \subseteq \tau_j\text{-}pcl(A) \) which implies \(\tau_j\text{-}Bcl(A) \subseteq U \). Therefore \(A \) is \((i, j)\)-\(Bg\)-closed. \(\blacksquare \)

The converse of this Theorem 7.2.18 need not be true, as seen from the following Example.

Example 7.2.19 Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \), a non open set \(B = \{b, c\} \). Then the subsets \(\{a\} \) and \(\{b\} \) are \((1, 2)\)-\(gp\)-closed sets but not \((1, 2)\)-\(Bg\)-closed set in the bitopological space \((X, \tau_1, \tau_2)\).

Theorem 7.2.20 If \(A \) is \((i, j)\)-\(g^*\)-closed subset of a bitopological space \((X, \tau_1, \tau_2)\), then the set \(A \) is \((i, j)\)-\(Bg\)-closed.

Proof. Let \(A \) be a \((i, j)\)-\(g^*\)-closed subset of \((X, \tau_1, \tau_2)\). Let \(U \in O(X, \tau_i) \) be such that \(A \subseteq U \). Since \(O(X, \tau_i) \subseteq GO(X, \tau_i) \), we have \(U \in GO(X, \tau_i) \). Then by hypothesis, \(\tau_j\text{-}cl(A) \subseteq U \). Also \(\tau_j\text{-}Bcl(A) \subseteq \tau_j\text{-}cl(A) \) which implies \(\tau_j\text{-}Bcl(A) \subseteq U \). Therefore \(A \) is \((i, j)\)-\(Bg\)-closed. \(\blacksquare \)

The converse of this Theorem 7.2.20 need not be true, as seen from the following Example.

Example 7.2.21 Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \), a non open set \(B = \{b, c\} \). Then the subsets \(\{c\}, \{b, c\}, \{a, d\}, \{a, c\}, \{b, d\}, \{a, b, c\} \) and \(\{a, b, d\} \) are \((1, 2)\)-\(Bg\)-closed sets but not \((1, 2)\)-\(g^*\)-closed set in the bitopological space \((X, \tau_1, \tau_2)\).
Remark 7.2.22 From the above discussions and known results we have the following diagram of implications

\[A \rightarrow B \] we mean \(A \) implies \(B \) but not conversely and \(A \leftrightarrow B \) means \(A \) and \(B \) are independent of each other.

![Diagram](fig-4)

Theorem 7.2.23 If \(A, B \in D_B(i, j) \), then \(A \cup B \in D_B(i, j) \).

Proof. Let \(U \in O(X, \tau_i) \) be such that \(A \cup B \subseteq U \). Then \(A \subseteq U \) and \(B \subseteq U \). Since \(A, B \in D_B(i, j) \), we have \(\tau_j - Bcl(A) \subseteq U \) and \(\tau_j - Bcl(B) \subseteq U \). That is \(\tau_j - Bcl(A) \cup \tau_j - Bcl(B) \subseteq U \). Also \(\tau_j - Bcl(A) \cup \tau_j - Bcl(B) = \tau_j - Bcl(A \cup B) \) and so \(\tau_j - Bcl(A \cup B) \subseteq U \). Therefore \(A \cup B \in D_B(i, j) \).

Remark 7.2.24 The intersection of two \((i, j)\)-\(Bg\)-closed sets is generally not an \((i, j)\)-\(Bg\)-closed set as seen from the following Example.

Example 7.2.25 Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}\} \), a non open set \(B = \{b, c\} \). Then the subsets \(\{a, d\} \) and \(\{a, c\} \) are \((1, 2)\)-\(Bg\)-closed sets, but \(\{a, d\} \cap \{a, c\} = \{a\} \) is not \((1, 2)\)-\(Bg\)-closed set in the bitopological space \((X, \tau_1, \tau_2)\).

Remark 7.2.26 The family \(D_B(1, 2) \) is generally not equal to the family \(D_B(2, 1) \) as seen from the following Example.
Example 7.2.27 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}\}$, a non-open set $B = \{b, c\}$. Then $D_B(1, 2) = P(X) - \{\{a\}, \{b\}\}$ and $D_B(2, 1) = P(X) - \{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\}\}$. Therefore $D_B(1, 2) \neq D_B(2, 1)$.

Theorem 7.2.28 If $\tau_1 \subseteq \tau_2$ and $O(X, \tau_1) \subseteq O(X, \tau_2)$ in (X, τ_1, τ_2), then $D_B(\tau_1, \tau_2) \supseteq D_B(\tau_2, \tau_1)$.

Proof. Let $A \in D_B(\tau_2, \tau_1)$. That is A is an $(2, 1)$-Bg-closed set. To prove that $A \in D_B(\tau_1, \tau_2)$. Let $G \in O(X, \tau_1)$ be such that $A \subseteq G$. Since $O(X, \tau_1) \subseteq O(X, \tau_2)$, we have $G \in O(X, \tau_2)$. As A is $(2, 1)$-Bg-closed set, we have τ_1-$Bcl(A) \subseteq G$. Since $\tau_1 \subseteq \tau_2$, we have τ_2-$Bcl(A) \subseteq \tau_1$-$Bcl(A)$ and it follows that τ_2-$Bcl(A) \subseteq G$. Hence A is a $(1, 2)$-Bg-closed set. That is $A \in D_B(\tau_1, \tau_2)$. Therefore $D_B(\tau_1, \tau_2) \supseteq D_B(\tau_2, \tau_1)$.

Theorem 7.2.29 If A is (i, j)-Bg-closed, then τ_j-$Bcl(A) - A$ contains no nonempty τ_i-B-open set.

Proof. Let A be an (i, j)-Bg-closed set. Suppose F is a non-empty τ_i-B-open set contained in τ_j-$Bcl(A) - A$. Now $F \subseteq X - A$ which implies $A \subseteq F^c$. Also F^c is a τ_i-open. Since A is an (i, j)-Bg-closed set, we have τ_j-$Bcl(A) \subseteq F^c$. Consequently $F \subseteq \tau_j$-$Bcl(A) \cap (\tau_j$-$Bcl(A))^c = \phi$, which is a contradiction. Hence τ_j-$Bcl(A) - A$ does not contain any non-empty τ_i-B-open set.

The converse of this Theorem 7.2.29 does not hold as seen from the following Example.

Example 7.2.30 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ a non-open set $B = \{b, c\}$. If $A = \{a, b\}$, then τ_2-$Bcl(A) - A = X - \{a, b\} = \{c\}$ does not contain any non-empty τ_i-B-open set. But A is not $(1, 2)$-Bg-closed set in the bitopological space (X, τ_1, τ_2).

Corollary 7.2.31 If A is (i, j)-Bg-closed in (X, τ_1, τ_2), then A is τ_j-closed if and only if τ_j-$Bcl(A) - A$ is a τ_i-B-open set.

92
Proof. Suppose \(A \) is \(\tau_j \)-closed. Then \(\tau_j-Bcl(A) = A \) and so \(\tau_j-Bcl(A) - A = \phi \), which is \(\tau_i-B \)-open set.

Conversely, suppose \(\tau_j-Bcl(A) - A \) is \(\tau_i-B \)-open. Since \(A \) is \((i, j) \)-\(Bg \)-closed, by Theorem 7.2.29, \(\tau_j-Bcl(A) - A \) does not contain any non-empty \(\tau_i-B \)-open set. Therefore \(\tau_j-Bcl(A) - A = \phi \). That is \(\tau_j-Bcl(A) = A \) and hence \(A \) is \(\tau_j \)-closed.

\[\square \]

Theorem 7.2.32 If \(A \) is an \((i, j) \)-\(Bg \)-closed set and \(\tau_i \subseteq BO(X, \tau_i) \), then \(\tau_j-Bcl(\{x\}) \cap A \neq \phi \) for each \(x \in \tau_j-Bcl(A) \).

Proof. Let \(A \) be an \((i, j) \)-\(Bg \)-closed set and \(\tau_i \subseteq BO(X, \tau_i) \). Suppose \(\tau_i-Bcl(\{x\}) \cap A = \phi \) for some \(x \in \tau_j-Bcl(A) \), then \(A \subseteq (\tau_i-Bcl(\{x\}))^c \). Now \((\tau_i-Bcl(\{x\}))^c \in \tau_i \subseteq BO(X, \tau_i) \), by hypothesis. That is \((\tau_i-Bcl(\{x\}))^c \) is a \(\tau_i-Bg \)-open. Since \(A \) is a \((i, j) \)-\(Bg \)-closed, we have \(\tau_j-Bcl(A) \subseteq (\tau_i-Bcl(\{x\}))^c \). This shows that \(x \notin \tau_j-Bcl(A) \). This contradicts the assumption.

\[\square \]

Theorem 7.2.33 If \(U \) is an \((i, j) \)-\(Bg \)-closed set and \(U \subseteq V \subseteq \tau_j-Bcl(U) \), then \(V \) is an \((i, j) \)-\(Bg \)-closed set.

Proof. Let \(G \) be a \(\tau_i-B \)-open set such that \(V \subseteq G \). As \(U \) is \((i, j) \)-\(Bg \)-closed set and \(U \subseteq G \), we have \(\tau_j-Bcl(U) \subseteq G \). Now \(V \subseteq \tau_j-Bcl(U) \) which implies, \(\tau_j-Bcl(V) \subseteq \tau_j-Bcl(\{\tau_j-Bcl(U)\}) = \tau_j-Bcl(U) \subseteq G \). Thus \(\tau_j-Bcl(U) \subseteq G \). Therefore \(V \) is \((i, j) \)-\(Bg \)-closed set.

\[\square \]

Theorem 7.2.34 In a bitopological space \((X, \tau_1, \tau_2) \), if \(BO(X, \tau_i) = \{X, \phi\} \), then every subset of \((X, \tau_1, \tau_2) \) is an \((i, j) \)-\(Bg \)-closed.

Proof. Let \(BO(X, \tau_i) = \{X, \phi\} \) in a bitopological space \((X, \tau_1, \tau_2) \). Let \(A \) be any subset of \(X \). To prove that \(A \) is an \((i, j) \)-\(Bg \)-closed, suppose \(A = \phi \), then \(A \) is an \((i, j) \)-\(Bg \)-closed. Suppose \(A \neq \phi \), then \(X \) is the only \(\tau_i-B \)-open set and \(\tau_j-Bcl(A) \subset X \). Hence \(A \) is an \((i, j) \)-\(Bg \)-closed set.

\[\square \]

The converse of the above Theorem 7.2.34 need not be true in general as seen from the following Example.
Example 7.2.35 Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \emptyset\} \). Then every subset of \(X \) is \((2, 1)\)-\(Bg\)-closed set but \(BO(X, \tau_1) = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) with non open set \(B = \{b, c\} \).

Theorem 7.2.36 If \(A \) is a \(\tau_1 \)-open and \((i, j)\)-\(g\)-closed, then \(A \) is \((i, j)\)-\(Bg\)-closed.

Proof. Let \(G \) be a \(\tau_i \)-open set such that \(A \subseteq G \). Now \(A \subseteq A \), \(A \) is \(\tau_i \)-open and \((i, j)\)-\(g\)-closed, we have \(\tau_j - cl(A) \subseteq A \). Then \(\tau_j - Bcl(A) \subseteq A \). That is \(\tau_j - Bcl(A) \subseteq G \). Therefore \(A \) is \((i, j)\)-\(Bg\)-closed.

7.3 \((\tau_i, \tau_j)\)-\(Bg\)-Open Sets

In this section, we introduce \((\tau_i, \tau_j)\)-\(Bg\)-open sets in bitopological spaces and study some of their properties.

Definition 7.3.1 Let \(i, j \in \{1, 2\} \) be fixed integers. In a bitopological space \((X, \tau_1, \tau_2)\), a subset \(A \subset X \) is said to be \((\tau_i, \tau_j)\)-\(B\)-generalized open (briefly, \((i, j)\)-\(Bg\)-open) set if \(A^c \) is \((i, j)\)-\(B\)-generalized closed (briefly, \((i, j)\)-\(Bg\) closed).

Theorem 7.3.2 In a bitopological space \((X, \tau_1, \tau_2)\), we have the following

\[\begin{align*}
\text{i) } & \text{ Every } (i, j)\text{-}w\text{-open set is } (i, j)\text{-}Bg\text{-open but not conversely.} \\
\text{ii) } & \text{ Every } (i, j)\text{-}Bg\text{-open set is } (i, j)\text{-}gpr\text{-open but not conversely.} \\
\text{iii) } & \text{ Every } (i, j)\text{-}gpr\text{-open set is } (i, j)\text{-}Bg\text{-open but not conversely.} \\
\text{iv) } & \text{ Every } wg\text{-open set is } (i, j)\text{-}Bg\text{-open but not conversely.} \\
\text{v) } & \text{ Every } Bg\text{-open set is } (i, j)\text{-}rg\text{-open but not conversely.} \\
\text{vi) } & \text{ Every } Bg\text{-open set is } (i, j)\text{-}Bg\text{-open but not conversely.}
\end{align*}\]

Proof. The proof follows from the Theorems 7.2.3, 7.2.14, 7.2.18, 7.2.16, 7.2.8 and 7.2.12.
Theorem 7.3.3 If A and B are (i, j)-Bg-open sets, then $A \cap B$ is (i, j)-Bg-open.

Proof. The proof follows from the Theorem 7.2.23. □

Remark 7.3.4 The union of two (i, j)-Bg-open sets is generally not an (i, j)-Bg-open set as seen from the following Example.

Example 7.3.5 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$, a non-open set $B = \{b, c\}$. Then the subsets $\{c\}$ and $\{d\}$ are $(1, 2)$-Bg-open sets, but $\{c\} \cup \{d\} = \{c, d\}$ is not $(1, 2)$-Bg-open set in the bitopological space (X, τ_1, τ_2).

7.4 (τ_i, τ_j)-Bg-Closure in Bitopological Spaces

Definition 7.4.1 Let (X, τ_1, τ_2) be a bitopological space and $i, j \in \{1, 2\}$ be fixed integers. For each subset E of X, we define (τ_i, τ_j)-Bg-cl$(E) = \bigcap\{A : E \subseteq A \in (i, j)$-$Bg$-closed $\}$ (briefly, (i, j)-Bg-cl(E)).

Theorem 7.4.2 If A and B be subsets of (X, τ_1, τ_2). Then
(i) (i, j)-Bg-cl$(X) = X$ and (i, j)-Bg-cl$(\emptyset) = \emptyset$.
(ii) $A \subseteq (i, j)$-Bg-cl(A).
(iii) If B is any (i, j)-Bg-closed set containing A, then (i, j)-Bg-cl$(A) \subseteq B$.

Proof. Follows from the Definition 7.4.1. □

Theorem 7.4.3 Let A and B be subsets of (X, τ_1, τ_2) and $i, j \in \{1, 2\}$ be fixed integers. If $A \subseteq B$, then (i, j)-Bg-cl$(A) \subseteq (i, j)$-Bg-cl(B).

Proof. Let $A \subseteq B$. By Definition 7.4.1, (i, j)-Bg-cl$(B) = \cap\{F : B \subseteq F \in D_B(i, j)\}$. If $B \subseteq F \in D_B(i, j)$, since $A \subseteq B$, $A \subseteq B \subseteq F \in D_B(i, j)$, we have (i, j)-Bg-cl$(A) \subseteq F$. Therefore (i, j)-Bg-cl$(A) \subseteq \cap\{F : B \subseteq F \in D_B(i, j)\} = (i, j)$-$Bg$-cl$(B)$. That is (i, j)-Bg-cl$(A) \subseteq (i, j)$-Bg-cl(B). □
Theorem 7.4.4 Let A be a subset of (X, τ_1, τ_2). If $\tau_1 \subseteq \tau_2$, then $(1, 2)\cdot Bg-cl(A) \subseteq (2, 1)\cdot Bg-cl(A)$.

Proof. By Definition 7.4.1, it follows that $(1, 2)\cdot Bg-cl(A) = \cap \{F : A \subseteq F \in D_B(1, 2)\}$. Since $\tau_1 \subseteq \tau_2$ by Theorem 7.2.28 $D_B(2, 1) \subseteq D_B(1, 2)$. Therefore $\cap \{F : A \subseteq F \in D_B(2, 1)\} \subseteq \cap \{F : A \subseteq F \in D_B(2, 1)\}$. That is $(1, 2)\cdot Bg-cl(A) \subseteq \cap \{F : A \subseteq F \in D_B(2, 1)\} = (2, 1)\cdot Bg-cl(A)$. Hence $(1, 2)\cdot Bg-cl(A) \subseteq (2, 1)\cdot Bg-cl(A)$. ■

Theorem 7.4.5 Let A be a subset of (X, τ_1, τ_2) and $i, j \in \{1, 2\}$ be fixed integers, then $A \subseteq (i, j)\cdot Bcl(A) \subseteq \tau_j \cdot cl(A)$.

Proof. By Definition 7.4.1, it follows that $A \subseteq (i, j)\cdot Bg-cl(A)$. Now to prove that $(i, j)\cdot Bg-cl(A) \subseteq \tau_j \cdot cl(A)$. By Definition of B-closure, $\tau_j \cdot Bcl(A) = \cap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \tau_j \cdot B\text{-closed} \}$. If $A \subseteq F$ and F is $\tau_j \cdot B$-closed, then F is $(i, j)\cdot B$-closed, as every $\tau_j \cdot B$-closed set is $(i, j)\cdot Bg$-closed. Therefore $(i, j)\cdot B-cl(A) \subseteq \cap \{F \subseteq X : A \subseteq F \text{ and } F \text{ is } \tau_j \cdot B\text{-closed} \} = \tau_j \cdot Bcl(A)$. Hence $(i, j)\cdot Bg-cl(A) \subseteq \tau_j \cdot cl(A)$. ■

Remark 7.4.6 Containment relation in the above Theorem 7.4.5 may be proper as seen from the following Example.

Example 7.4.7 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}\}$, a non open set $B = \{b, c\}$. Then τ_2-closed sets are $X, \phi, \{b, c\}$ and $(1, 2)\cdot Bg$-closed sets are $X, \phi, \{c\}, \{a, c\}, \{b, c\}$. Take $A = \{a\}$. Then $\tau_2 \cdot cl(A) = X$ and $(1, 2)\cdot Bg-cl(A) = \{a, c\}$. Now $A \subset (1, 2)\cdot Bg-cl(A)$, but $A \neq (1, 2)\cdot Bg-cl(A)$. Also $(1, 2)\cdot Bg-cl(A) \subset \tau_2 \cdot cl(A)$, but $(i, j)\cdot Bg-cl(A) \neq \tau_j \cdot cl(A)$.

Theorem 7.4.8 Let A be a subset of (X, τ_1, τ_2) and $i, j \in \{1, 2\}$ be fixed integers. If A is $(i, j)\cdot Bg$-closed, then $(i, j)\cdot Bg-cl(A) = A$.

96
Proof. Let \(A \) be \((i, j)\)-\(Bg \)-closed subset of \((X, \tau_1, \tau_2)\). We know that \(A \subseteq (i, j)\)-\(Bg \)-cl\((A)\). Also \(A \subseteq A \) and \(A \) is a \((i, j)\)-\(Bg \)-closed. By the Theorem 7.4.2(iii), \((i, j)\)-\(Bg \)-cl\((A)\) \(\subseteq A\). Hence \((i, j)\)-\(Bg \)-cl\((A)\) = \(A \).

Remark 7.4.9 The converse of the above Theorem 7.4.8 need not be true as seen from the following Example.

Example 7.4.10 Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}\} \), a non open set \(B = \{b, c\} \). Then \((1, 2)\)-\(Bg \)-closed sets are \(P(X) - \{\{a\}, \{b\}, \{a, b\}\} \). Take \(A = \{a\} \). Now \((1, 2)\)-\(Bg \)-cl\((A)\) = \(\{a\} \), but \(\{a\} \) is not \((1, 2)\)-\(Bg \)-closed set.

Theorem 7.4.11 The operator \((i, j)\)-\(Bg \)-closure in Definition 7.4.1, is the Kuratowski closure operator on \(X \).

Proof. (i) \((i, j)\)-\(Bg \)-cl\((\phi)\) = \(\phi \), by Theorem 7.4.2(i).

(ii) \(E \subseteq (i, j)\)-\(Bg \)-cl\((E)\) for any subset \(E \) of \(X \) by Theorem 7.4.2(ii).

(iii) Suppose \(E \) and \(F \) are two subsets of \((X, \tau_1, \tau_2)\). It follows from Theorem 7.4.3, that \((i, j)\)-\(Bg \)-cl\((F)\) \(\subseteq (i, j)\)-\(Bg \)-cl\((E \cup F)\) and that \((i, j)\)-\(Bg \)-cl\((E)\) \(\subseteq (i, j)\)-\(Bg \)-cl\((E \cup F)\). Hence we have \((i, j)\)-\(Bg \)-cl\((E)\cup(i, j)\)-\(Bg \)-cl\((F)\) \(\subseteq (i, j)\)-\(Bg \)-cl\((E \cup F)\).

Now if \(x \) does not belongs to \((i, j)\)-\(Bg \)-cl\((E)\cup(i, j)\)-\(Bg \)-cl\((F)\), then \(x \notin (i, j)\)-\(Bg \)-cl\((E)\) and \(x \notin (i, j)\)-\(Bg \)-cl\((F)\), it follows that there exist \(A, B \in Bg(i, j) \) such that \(E \subseteq A, x \notin A \) and \(F \subseteq B, x \notin B \). Hence \(E \cup F \subseteq A \cup B \), \(x \notin A \cup B \). Since \(A \cup B \) is \((i, j)\)-\(Bg \)-closed, by Theorem 7.2.14, \(x \) does not belong to \((i, j)\)-\(Bg \)-cl\((E \cup F)\). Then we have \((i, j)\)-\(Bg \)-cl\((E \cup F)\) \(\subseteq (i, j)\)-\(Bg \)-cl\((E)\cup(i, j)\)-\(Bg \)-cl\((F)\). From the above discussion we have \((i, j)\)-\(Bg \)-cl\((E \cup F)\) = \((i, j)\)-\(Bg \)-cl\((E)\cup(i, j)\)-\(Bg \)-cl\((F)\).

(iv) Let \(E \) be any subset of \((X, \tau_1, \tau_2)\). By the Definition of \((i, j)\)-\(Bg \)-closure, \((i, j)\)-\(Bg \)-cl\((E)\) = \(\cap\{A \subseteq X : E \subseteq A \in D_B(i, j)\} \). If \(E \subseteq A \in D_B(i, j) \), then \((i, j)\)-\(Bg \)-cl\((E)\) \(\subseteq A\). Since \(A \) is \((i, j)\)-\(Bg \)-closed set containing \((i, j)\)-\(Bg \)-cl\((E)\), by Theorem 7.4.2 (iii), \((i, j)\)-\(Bg \)-cl\((E)\) \(\subseteq A\), Hence
Proof. Let \((i, j)\) be two fixed integers. Then
\[
\text{the topology on } X \text{ generated by } (i, j) - Bg\text{-closure in the usual manner. That is } \\
\tau_{Bg}(i, j) = \{ E \subset X : (i, j) - Bg\text{-cl}(E) = E^c \}.
\]

Conversely, \((i, j) - Bg\text{-cl}(E) \subset (i, j) - Bg\text{-cl}((i, j) - Bg\text{-cl}(E))\) is true by Theorem 7.4.2(iii). Then we have \((i, j) - Bg\text{-cl}(E) = (i, j) - Bg\text{-cl}((i, j) - Bg\text{-cl}(E))\). Hence \((i, j) - Bg\text{-closure is a Kuratowski closure operator on } X.\n
From the above Theorem 7.4.11, \((i, j) - Bg\text{-closure defines the new topology on } X.\n
Definition 7.4.12 Let \(i, j \in \{1, 2\}\) be two fixed integers. Let \(\tau_{Bg}(i, j)\) be the topology on \(X\) generated by \((i, j) - Bg\text{-closure in the usual manner. That is } \tau_{Bg}(i, j) = \{ E \subset X : (i, j) - Bg\text{-cl}(E^c) = E^c \}.\n
Theorem 7.4.13 Let \((X, \tau_1, \tau_2)\) be a bitopological space and \(i, j \in \{1, 2\}\) be two fixed integers. Then \(\tau_j \subseteq \tau_{Bg}(i, j).\n
Proof. Let \(G \in \tau_j\), it follows that \(G^c\) is \(\tau_j\text{-closed. By Theorem 7.2.10, } G^c\) is \((i, j) - Bg\text{-closed. Therefore } (i, j) - Bg\text{-cl}(G^c) = G^c\), by Theorem 7.4.8 That is \(G \in \tau_{Bg}(i, j)\) and hence \(\tau_j \subseteq \tau_{Bg}(i, j).\) \n
Remark 7.4.14 Containment relation in the above Theorem 7.4.13 may be proper as seen from the following Example.

Example 7.4.15 Let \(X = \{a, b, c, d\}\), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}\), a non open set \(B = \{b, c\}\). Then \((1, 2) - Bg\text{-closed sets are } P(X) - \{\{a\}, \{b\}, \{a, b\}\}\) and \(\tau_{Bg}(1, 2) = P(X).\) Clearly \(\tau_2 \subseteq \tau_{Bg}(1, 2)\), but \(\tau_2 \neq \tau_{Bg}(1, 2).\)

Theorem 7.4.16 Let \((X, \tau_1, \tau_2)\) be a bitopological space and \(i, j \in \{1, 2\}\) be two fixed integers. If a subset \(E\) of \(X\) is \((i, j) - Bg\text{-closed, then } E\) is \(\tau_{Bg}(i, j)\text{-closed.}\)

98
Proof. Let a subset E of X be (i, j)-Bg-closed. By Theorem 7.4.8, (i, j)-Bg-$cl(E) = E$. That is (i, j)-Bg-$cl\{(E^c)^c\} = (E^c)^c$, it follows that $E^c \in \tau_{Bg}(i, j)$. Therefore, E is $\tau_{Bg}(i, j)$-closed.

Remark 7.4.17 The converse of the above Theorem 7.4.16 need not be true as seen from the following Example.

Example 7.4.18 For (X, τ_1, τ_2) of Example 7.4.15, the subset $A = \{a\}$ is $\tau_{Bg}(1, 2)$-closed, but not $(1, 2)$-Bg-closed.

Theorem 7.4.19 If $\tau_1 \subseteq \tau_2$ and $BO(X, \tau_1) \subseteq BO(X, \tau_2)$ in (X, τ_1, τ_2), then $\tau_{Bg}(2, 1) \subseteq \tau_{Bg}(1, 2)$.

Proof. Let $G \in \tau_{Bg}(2, 1)$, then $(2, 1)$-Bg-$cl(G^c) = G^c$. To prove that $G \in \tau_{Bg}(1, 2)$. That is to prove $(1, 2)$-Bg-$cl(G^c) = G^c$. Now $(1, 2)$-Bg-$cl(G^c) = \cap \{F \subseteq X : G^c \subseteq F \in D_{Bg}(1, 2)\}$. Since $\tau_1 \subseteq \tau_2$ and $BO(X, \tau_1) \subseteq BO(X, \tau_2)$, by Theorem 7.2.16, $D_{Bg}(2, 1) \subseteq D_{Bg}(1, 2)$. Thus $\cap \{F \subseteq X : G^c \subseteq F \in D_{Bg}(1, 2)\} \subseteq \cap \{F \subseteq X : G^c \subseteq F \in D_{Bg}(2, 1)\}$. That is $(1, 2)$-Bg-$cl(G^c) \subseteq (2, 1)$-Bg-$cl(G^c) = G^c$, and so $(1, 2)$-Bg-$cl(G^c) \subseteq G^c$.

Conversely $G^c \subseteq (1, 2)$-Bg-$cl(G^c)$ is true by the Theorem 7.4.2(ii). Then we have $(1, 2)$-Bg-$cl(G^c) = G^c$. That is $G \in \tau_{Bg}(1, 2)$ and hence $\tau_{Bg}(2, 1) \subseteq \tau_{Bg}(1, 2)$.

7.5 $D_B(i, j)$-σ_k-Continuous and gB-bi-Continuous Maps

In this section a new class of maps called $D_B(i, j)$-σ_k-continuous maps in bitopological spaces are introduced and investigated. During this process, some of their properties are obtained. It is found that every $C(i, j)$-σ_k-continuous map is
$D_B(i, j)\cdot \sigma_k$-continuous which implies $D_r(i, j)\cdot \sigma_k$-continuous. Also, we introduced the concept of $Bg\cdot bi$-continuity and $Bg\cdot s\cdot bi$-continuity in bitopological spaces and study some of their properties.

Definition 7.5.1 A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $D_B(i, j)\cdot \sigma_k$-continuous if the inverse image of every σ_k-closed set is an (i, j)-Bg-closed set in (X, τ_1, τ_2).

Remark 7.5.2 If $\tau_1 = \tau_2 = \tau$ and $\sigma_1 = \sigma_2 = \sigma$ in Definition 7.5.1, then the $D_B(i, j)\cdot \sigma_k$-continuity of maps coincides with gB-continuity of maps in topological spaces.

Theorem 7.5.3 If a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_j\cdot \sigma_k$-continuous, then it is $D_B(i, j)\cdot \sigma_k$-continuous.

Proof. Let V be a σ_k-closed set. Since f is $\tau_j\cdot \sigma_k$-continuous, $f^{-1}(V)$ is τ_j-closed. By Theorem 7.2.10, $f^{-1}(V)$ is (i, j)-Bg-closed in (X, τ_1, τ_2). Therefore f is $D_B(i, j)\cdot \sigma_k$-continuous.

The converse of this Theorem 7.5.3 need not be true as seen from the following Example.

Example 7.5.4 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$, $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{p\}\}$ and $\sigma_2 = \{Y, \phi, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = f(b) = f(d) = p$, $f(c) = q$. Then f is $D_B(1, 2)\cdot \sigma_1$-continuous but it is not $\tau_2\cdot \sigma_1$-continuous, since for the σ_1-closed set $\{q\}$, $f^{-1}(\{q\}) = \{c\}$ which is not τ_2-closed.

Theorem 7.5.5 If a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $C(i, j)\cdot \sigma_k$-continuous, then it is $D_B(i, j)\cdot \sigma_k$-continuous.

Proof. Let V be a σ_k-closed set. Since f is $C(i, j)\cdot \sigma_k$-continuous, $f^{-1}(V)$ is (i, j)-w-closed. By Theorem 7.2.3, $f^{-1}(V)$ is (i, j)-Bg-closed in (X, τ_1, τ_2). Therefore f is $D_B(i, j)\cdot \sigma_k$-continuous.
The converse of this Theorem 7.5.5 need not be true as seen from the following Example.

\textbf{Example 7.5.6} Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \), and \(Y = \{p, q\}, \sigma_1 = \{Y, \phi, \{p\}\} \) and \(\sigma_2 = \{Y, \phi, \{q\}\} \). Define a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(d) = q \), and \(f(b) = f(c) = p \). Then \(f \) is \(D_B(1, 2) \)-\(\sigma_1 \)-continuous but it is not \(C(1, 2) \)-\(\sigma_1 \)-continuous, since for the \(\sigma_1 \)-closed set \(\{q\} \), \(f^{-1}(\{q\}) = \{a, d\} \) which is not \((1, 2) \)-\(w \)-closed set.

\textbf{Theorem 7.5.7} If a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous, then it is \(D_r(i, j) \)-\(\sigma_k \)-continuous.

\textbf{Proof.} Let \(V \) be a \(\sigma_k \)-closed set. Since \(f \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous, \(f^{-1}(V) \) is \((i, j) \)-\(Bg \)-closed. By Theorem 7.2.8, \(f^{-1}(V) \) is \((i, j) \)-\(rg \)-closed in \((X, \tau_1, \tau_2) \). Therefore \(f \) is \(D_r(i, j) \)-\(\sigma_k \)-continuous.

The converse of this Theorem 7.5.7 need not be true as seen from the following Example.

\textbf{Example 7.5.8} Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \), and \(Y = \{p, q\}, \sigma_1 = \{Y, \phi, \{p\}\} \) and \(\sigma_2 = \{Y, \phi, \{q\}\} \). Define a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(b) = q \), and \(f(c) = f(d) = p \). Then \(f \) is \(D_r(1, 2) \)-\(\sigma_1 \)-continuous but it is not \(D_B(1, 2) \)-\(\sigma_1 \)-continuous, since for the \(\sigma_1 \)-closed set \(\{q\} \), \(f^{-1}(\{q\}) = \{a, b\} \) which is not \((1, 2) \)-\(Bg \)-closed set.

\textbf{Theorem 7.5.9} If a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous, then it is \(\wp(i, j) \)-\(\sigma_k \)-continuous.

\textbf{Proof.} Let \(V \) be a \(\sigma_k \)-closed set. Since \(f \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous, \(f^{-1}(V) \) is \((i, j) \)-\(B \)-closed. By Theorem 7.2.14, \(f^{-1}(V) \) is \((i, j) \)-\(gpr \)-closed in \((X, \tau_1, \tau_2) \). Therefore \(f \) is \(\wp(i, j) \)-\(\sigma_k \)-continuous.

The converse of this Theorem need not be true as seen from the following Example.
Example 7.5.10 Let \(X = \{a, b, c, d\}, \ \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}\} \), and \(Y = \{p, q\}, \ \sigma_1 = \{Y, \phi, \{p\}\} \) and \(\sigma_2 = \{Y, \phi\} \). Define a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(b) = q \), and \(f(c) = f(d) = p \). Then this function \(f \) is \(\sigma(1, 2) \)-continuous but it is not \(D_B(1, 2)\)-continuous, since for the \(\sigma_2 \)-closed set \(\{q\} \), \(f^{-1}(\{q\}) = \{a, b\} \) which is not \((1, 2)\)-closed set in \((X, \tau_1, \tau_2) \).

Theorem 7.5.11 If a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(D(i, j)\)-\(\sigma_k \)-continuous, then it is \(D_B(i, j)\)-\(\sigma_k \)-continuous.

Proof. Let \(V \) be a \(\sigma_k \)-closed set. Since \(f \) is \(D(i, j)\)-\(\sigma_k \)-continuous, \(f^{-1}(V) \) is \((i, j)\)-\(g \)-closed. By Theorem 7.2.12, \(f^{-1}(V) \) is \((i, j)\)-\(Bg \)-closed in \((X, \tau_1, \tau_2) \). Therefore \(f \) is \(D_B(i, j)\)-\(\sigma_k \)-continuous.

The converse of this Theorem need not be true as seen from the following Example.

Example 7.5.12 Let \(X = \{a, b, c\}, \ \tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \), and \(Y = \{p, q\}, \ \sigma_1 = \{Y, \phi, \{p\}\} \) and \(\sigma_2 = \{Y, \phi, \{q\}\} \). Define a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(c) = p \), and \(f(b) = q \). Then this function \(f \) is \(D_B(1, 2)\)-\(\sigma_1 \)-continuous but it is not \(D(1, 2)\)-\(\sigma_1 \)-continuous, since for the \(\sigma_2 \)-closed set \(\{q\} \), \(f^{-1}(\{q\}) = \{q\} \) which is not \((1, 2)\)-\(g \)-closed set in \((X, \tau_1, \tau_2) \).

Theorem 7.5.13 If a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(W(i, j)\)-\(\sigma_k \)-continuous, then it is \(D_B(i, j)\)-\(\sigma_k \)-continuous.

Proof. Let \(V \) be a \(\sigma_k \)-closed set. Since \(f \) is \(W(i, j)\)-\(\sigma_k \)-continuous, \(f^{-1}(V) \) is \((i, j)\)-\(Wg \)-closed. By Theorem 7.2.16, \(f^{-1}(V) \) is \((i, j)\)-\(Bg \)-closed in \((X, \tau_1, \tau_2) \). Therefore \(f \) is \(D_B(i, j)\)-\(\sigma_k \)-continuous.

Example 7.5.14 Let \(X = \{a, b, c\}, \ \tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \), and \(Y = \{p, q\}, \ \sigma_1 = \{Y, \phi, \{p\}\} \) and \(\sigma_2 = \{Y, \phi, \{q\}\} \). Define a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) by \(f(a) = q \), and
Let $f(b) = f(c) = p$. Then this function f is $D_B(1, 2)-\sigma_1$-continuous but it is not $W(1, 2)-\sigma_1$-continuous, since for the σ_1-closed set $\{q\}$, $f^{-1}(\{q\}) = \{a\}$ which is not $(1, 2)$-wg-closed set in (X, τ_1, τ_2).

Remark 7.5.15 $D_B(i, j)-\sigma_k$-continuous maps and $D_{rw}(i, j)-\sigma_k$-continuous maps are independent.

Example 7.5.16 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$, and $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{q\}\}$ and $\sigma_2 = \{Y, \phi, \{p\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = f(b) = p$, and $f(c) = f(d) = q$. Then this function f is $D_{rw}(1, 2)-\sigma_1$-continuous but it is not $D_B(1, 2)-\sigma_1$-continuous, since for the closed set $\{p\}$, $f^{-1}(\{p\}) = \{a, b\}$ which is not $(1, 2)$-Bg-closed set in (X, τ_1, τ_2).

Example 7.5.17 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$, and $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{q\}\}$ and $\sigma_2 = \{Y, \phi, \{p\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = f(c) = q$, and $f(b) = f(d) = p$. Then this function f is $D_B(1, 2)-\sigma_1$-continuous but it is not $D_{rw}(1, 2)-\sigma_1$-continuous, since for the closed set $\{p\}$, $f^{-1}(\{p\}) = \{b, d\}$ which is not $(1, 2)$-rw-closed set in (X, τ_1, τ_2).

Remark 7.5.18 From the above discussions and known results we have the following implications. Here

$A \rightarrow B$ we mean A implies B but not conversely and

$A \leftrightarrow B$ means A and B are independent of each other.
Theorem 7.5.19 The following statements are equivalent:

(i) A map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous.

(ii) The inverse image of every \(\sigma_k \)-open set in \(Y \) is \((i, j)\)-\(B_g \)-open in \(X \).

Proof.
(i) \(\Rightarrow \) (ii) Let \(G \) be a \(\sigma_k \)-open set in \(Y \). Then \(G^c \) is \(\sigma_k \)-closed set in \(Y \). Since \(f \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous, \(f^{-1}(G^c) \) is \((i, j)\)-\(B_g \)-closed in \(X \), that is \(f^{-1}(G^c) = (f^{-1}(G))^c \) and so \(f^{-1}(G) \) is \((i, j)\)-\(B_g \)-open in \((X, \tau_1, \tau_2)\).

(ii) \(\Rightarrow \) (i) Let \(F \) be a \(\sigma_k \)-closed set in \(Y \). Then \(F^c \) is \(\sigma_k \)-open set in \(Y \). By hypothesis, \(f^{-1}(F^c) \) is \((i, j)\)-\(B_g \)-open in \(X \). That is \(f^{-1}(F^c) = (f^{-1}(F))^c \) and so \(f^{-1}(F) \) is \((i, j)\)-\(B_g \)-closed in \((X, \tau_1, \tau_2)\). Therefore \(f \) is is \(D_B(i, j) \)-\(\sigma_k \)-continuous.

Theorem 7.5.20 If a map \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous, then \(f((i, j) \cdot B_g \cdot cl(A)) \subset \sigma_k \cdot cl(f(A)) \) holds for every subset \(A \) of \(X \).

Proof. Let \(A \) be any subset of \(X \). Then \(f(A) \subset \sigma_k \cdot cl(f(A)) \) and \(\sigma_k \cdot cl(f(A)) \) is \(\sigma_k \)-closed set in \(Y \). Also \(f^{-1}(f(A)) \subset f^{-1}(\sigma_k \cdot cl(f(A))) \). That is \(A \subset f^{-1}(\sigma_k \cdot cl(f(A))) \). Since \(f \) is \(D_B(i, j) \)-\(\sigma_k \)-continuous, \(f^{-1}(\sigma_k \cdot cl(f(A))) \) is \((i, j)\)-\(B_g \)-closed in \((X, \tau_1, \tau_2)\). By Theorem 7.4.2 (iii), \((i, j)\)-\(B_g \)-\(cl(A) \subset f^{-1}(\sigma_k \cdot cl(f(A))) \). Therefore \(f((i, j) \cdot B_g \cdot cl(A)) \subset f(f^{-1}(\sigma_k \cdot cl(f(A)))) \subset f \cdot cl(f(A)) \). Hence \(f((i, j) \cdot B_g \cdot cl(A)) \subset \sigma_k \cdot cl(f(A)) \) for every subset \(A \) of \(X \).
Converse of the above Theorem 7.5.20 is not true as seen from the following Example.

Example 7.5.21 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$, and $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{q\}\}$ and $\sigma_2 = \{Y, \phi\}$. Then $D_B(2, 1) = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, d\}, \{b, d\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{a, b, d\}\}$. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a) = f(b) = p$, and $f(c) = f(d) = q$. Then $f((1, 2) - Bg-cl(A)) \subset \sigma_1 - cl(f(A))$ for every subset A of X. But f is not $(1, 2) - \sigma_1$-continuous, since for the closed set $\{p\}$, $f^{-1}(\{p\}) = \{a, b\}$ which is not $(1, 2) - \sigma_1-Bg$-closed set in (X, τ_1, τ_2).

Theorem 7.5.22 If a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $D_B(i, j)$-σ_k-continuous and $g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ is σ_k-η_n-continuous, then $g \circ f$ is $D_B(i, j)$-η_n-continuous.

Proof. Let F be η_n-closed set in (Z, η_1, η_2). Since g is σ_k-η_n-continuous, $g^{-1}(F)$ is σ_k-closed set in (Y, σ_1, σ_2). Since f is $D_B(i, j)$-σ_k-continuous, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is (i, j)-Bg-closed set in (X, τ_1, τ_2) and hence $g \circ f$ is $D_B(i, j)$-η_n-continuous.

Definition 7.5.23 (i) A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called gB-bi-continuous if f is $D_B(1, 2)$-σ_2-continuous and is $D_B(2, 1)$-σ_1-continuous.

(ii) A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called gB-strongly-bi-continuous (briefly gB-s-bi-continuous) if f is gB-bi-continuous, $D_B(2, 1)$-σ_2-continuous and $D_B(1, 2)$-σ_1-continuous.

Theorem 7.5.24 Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a map.

(i) If f is bi-continuous then f is gB-bi-continuous.

(ii) If f is s-bi-continuous then f is gB-s-bi-continuous.

Proof. (i) Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bi-continuous map. Then f is τ_1-σ_1-continuous and τ_2-σ_2-continuous and so by Theorem 7.5.7, f is $D_B(1, 2)$-σ_2-continuous and $D_B(2, 1)$-σ_1-continuous. Thus f is gB-bi-continuous.
(ii) Similar to (i), using Theorem 7.5.3.

The converse of this Theorem 7.5.24 need not be true in general as seen from the following Example.

Example 7.5.25 Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}$, and $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{p\}$ and $\sigma_2 = \{Y, \phi, \{q\}$. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a) = f(c) = q$, and $f(b) = p$. Then f is gB-s-bi-continuous but not s-bi-continuous. This map is also gB-bi-continuous but not bi-continuous.

Theorem 7.5.26 Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a map.

(i) If f is w-bi-continuous then f is gB-bi-continuous.

(ii) If f is w-s-bi-continuous then f is gB-s-bi-continuous.

Proof. (i) Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a w-bi-continuous map. Then f is $C(2, 1)$-σ_1-continuous and $C(1, 2)$-σ_2-continuous and so by Theorem 7.5.5, f is $D_B(1, 2)$-σ_2-continuous and $D_B(2, 1)$-σ_1-continuous. Thus f is gB-bi-continuous.

(ii) Similar to (i), using Theorem 7.5.5.

The converse of this Theorem 7.5.26 need not be true in general as seen from the following Example.

Example 7.5.27 Let $X = \{a, b, c, d\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}$, and $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{p\}$ and $\sigma_2 = \{Y, \phi, \{q\}$. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a) = f(c) = q$, and $f(a) = f(d) = q$. Then this function f is gB-bi-continuous but not w-bi-continuous, since f is not $C(1, 2)$-σ_2-continuous. This map is also gB-s-bi-continuous but not w-s-bi-continuous.

Theorem 7.5.28 Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a map.

(i) If f is gB-bi-continuous then f is rg-bi-continuous.

(ii) If f is gB-s-bi-continuous then f is rg-s-bi-continuous.
Proof. (i) Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be \(gB \)-bi-continuous map. Then \(f \) is \(D_B(2, 1) - \sigma_1 \)-continuous and \(D_B(1, 2) - \sigma_2 \)-continuous and so by Theorem 7.5.7, \(f \) is \(D_i(1, 2) - \sigma_2 \)-continuous and \(D_e(2, 1) - \sigma_1 \)-continuous. Therefore \(f \) is \(rg \)-bi-continuous.

(ii) Similar to (i), using Theorem 7.5.7.

The converse of this Theorem 7.5.28 need not be true in general as seen from the following Example.

Example 7.5.29 Let \(X = \{a, b, c, d\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\} \), and \(Y = \{p, q\} \), \(\sigma_1 = \{Y, \phi, \{q\}\} \) and \(\sigma_2 = \{Y, \phi, \{p\}\} \). Define a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(b) = p \), and \(f(c) = f(d) = q \). Then \(f \) is \(rg \)-bi-continuous but it is not \(gB \)-bi-continuous, since \(f \) is not \(D_B(1, 2) - \sigma_1 \)-continuous. This map is also \(rg \)-s-bi-continuous but not \(gB \)-s-bi-continuous.

Remark 7.5.30 The following diagram summarizes the above discussions.

\[
\begin{array}{cccccc}
\text{bi-continuity} & \text{w-bi-continuity} & \text{gB-bi-continuity} & \text{rg-bi-continuity} \\
\text{s-bi-continuity} & \text{ws-bi-continuity} & \text{gB-s-bi-continuity} & \text{rgs-bi-continuity}
\end{array}
\]

Definition 7.5.31 A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is called pairwise \(gB \)-irresolute if \(f^{-1}(A) \in D_B(i, j) \) in \((X, \tau_1, \tau_2) \) for every \(A \in D_B(k, e) \) in \((Y, \sigma_1, \sigma_2) \).

Remark 7.5.32 If \(\tau_1 = \tau_2 \) and \(\sigma_1 = \sigma_2 \) simultaneously, then \(f \) becomes a \(gB \)-irresolute map.

Theorem 7.5.33 If a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is pairwise \(gB \)-irresolute, then \(f \) is \(D_B(i, j) - \sigma_e \)-continuous.
Theorem 7.2.10. By hypothesis, therefore a \text{Theorem 7.5.36}

Proof. Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be pairwise \(gB \)-irresolute and \(F \) be a \(\sigma_e \)-closed set in \((Y, \sigma_1, \sigma_2) \). Then \(F \) is \((k, e)\)-\(gB \)-closed in \((Y, \sigma_1, \sigma_2) \) by Theorem 7.2.10. By hypothesis, \(f^{-1}(F) \) is \((i, j)\)-\(gB \)-closed set in \((X, \tau_1, \tau_2) \). Therefore \(f \) is \(D_B(i, j)\)-\(\sigma_e \)-continuous.

The converse of this Theorem 7.5.33 is not true in general as seen from the following Example.

Example 7.5.34 Let \(X = \{a, b, c, d\}, \tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\} \), and \(Y = \{p, q\}, \sigma_1 = \{Y, \emptyset\} \) and \(\sigma_2 = \{Y, \emptyset, \{p\}\} \). Define a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(b) = p \), and \(f(c) = f(d) = q \). Then \(f \) is \((1, 2)\)-\(gB \)-\(\sigma_2 \)-continuous but it is not pairwise \(gB \)-irresolute, since for the \((1, 2)\)-\(gB \)-closed set \(\{p\} \) in \((Y, \sigma_1, \sigma_2) \), \(f^{-1}(\{p\}) = \{a, b\} \) which is not \((1, 2)\)-\(Bg \)-closed set in \((X, \tau_1, \tau_2) \).

Theorem 7.5.35 The following statements are equivalent
(i) A map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is pairwise \(gB \)-irresolute
(ii) The inverse image of every \((k, e)\)-\(Bg \)-open set in \((Y, \sigma_1, \sigma_2)\) is \((i, j)\)-\(Bg \)-open set in \((X, \tau_1, \tau_2)\).

Proof. Proof is similar to that of Theorem 7.5.19.

Theorem 7.5.36 If \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) are two pairwise \(gB \)-irresolute maps, then their composition \(g \circ f \) is also pairwise \(gB \)-irresolute.

Proof. Let \(A \in D_B(m, n) \) in \((Z, \eta_1, \eta_2)\). Since \(g \) is pairwise \(gB \)-irresolute, \(g^{-1}(A) \in D_B(k, e) \) in \((Y, \sigma_1, \sigma_2)\). Since \(f \) is pairwise \(gB \)-irresolute, \(f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A) \in D_B(i, j) \). Hence \(g \circ f \) is pairwise \(gB \)-irresolute.

Theorem 7.5.37 If a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is pairwise \(gB \)-irresolute and \(g : (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) is \(D_B(k, e)\)-\(\eta_m \)-continuous, then \(g \circ f : (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2) \) is \(D_B(i, j)\)-\(\eta_m \)-continuous.
Proof. Let \(F \) be a \(\eta_n \)-closed set in \((Z, \eta_1, \eta_2)\). Since \(g \) is \(D_B(k, e) - \eta_n \)-continuous, \(g^{-1}(F) \in D_B(k, e) \) in \((Y, \sigma_1, \sigma_2)\). Since \(f \) is pairwise \(gB \)-irresolute, \(f^{-1}(g^{-1}(A)) = (g \circ f)^{-1}(A) \in D_B(i, j) \) in \((X, \tau_1, \tau_2)\) and hence \(g \circ f \) is \(D_B(i, j) - \eta_n \)-continuous. \(\blacksquare \)