Chapter 6

New Approaches for Homeomorphism in Topological Spaces

6.1 Introduction

The study of generalized closed (g-closed) sets in a topological space was initiated by Levine 1963 and concept of T_2-spaces was introduced. Balachandran et al. 1991 [9], introduced the concept of generalized continuous maps, generalized homeomorphism in a topological space. In this chapter we shall introduce a new class of open sets namely B^{**}-open sets and investigate some of their properties. Further, we introduce the concept of B^{**}-continuous maps which includes the class of continuous maps in a new topological space. Also we introduce B^{**}-irresolute maps analogy to irresolute maps in a topological space and investigate some of their properties. Moreover, we introduce the concept of B^{**}-compactness and B^{**}-connectedness.
on a topological space. Finally, we introduce a new class of maps namely B^{**}-homeomorphism in a topological space and study some of their properties.

6.2 B^{**}-Open Set

Definition 6.2.1 Let (X, τ) be a topological space and a subset A of X is said to be B^{**}-open if and only if there exist an open set U of X such that $U \subseteq A \subseteq Bcl(U)$.

Example 6.2.2 If $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$, a non open set $\{b\}$ then B^{**}-open sets of (X, τ) are $\{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$.

Theorem 6.2.3 Let (X, τ) be a topological space. A subset A of X is B^{**}-open in X if and only if $A \subseteq Bcl(int(A))$.

Proof. If A is B^{**}-open set of X, then there exists an open set U such that $U \subseteq A \subseteq Bcl(U)$, $U \subseteq A$, implies $U \subseteq int(A)$. Hence $Bcl(U) \subseteq Bcl(int(A))$. Therefore $A \subseteq Bcl(int(A))$.

Conversely, let $A \subseteq Bcl(int(A))$. To prove A is a B^{**}-open set in X, let $U = int(A)$. Then $U \subseteq A \subseteq Bcl(U)$. Hence A is B^{**}-open set in X.

Remark 6.2.4 If U is an open set in (X, τ), then U is B^{**}-open set.

Proof. Let U be an open set in X, it implies $U = int(U) \subseteq Bcl(int(U))$. Hence U is a B^{**}-open set in X.

70
Remark 6.2.5 The following example shows that the converse of the above remark need not be true.

Example 6.2.6 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \), then \(A = \{a, c\} \) is a \(B^{**} \)-open set in \(X \) but not open in \(X \).

Definition 6.2.7 A topological space \((X, \tau)\) is said to be \(B^{**}-T_{\frac{1}{2}} \) space if every \(B^{**} \)-open set of \(X \) is open in \(X \).

Theorem 6.2.8 If \(A \) and \(B \) are \(B^{**} \)-open sets of a topological space \(X \), then \(A \cup B \) is also \(B^{**} \)-open set in \(X \).

Proof. Given \(A \) and \(B \) are \(B^{**} \)-open set of \(X \), then there exists an open set \(U \) and \(V \) respectively such that \(U \subseteq A \subseteq Bcl(U) \) and \(V \subseteq B \subseteq Bcl(V) \) and also \(Bcl(U \cup V) = [Bcl(U)] \cup [Bcl(V)] \). Hence \(U \cup V \subseteq A \cup B \subseteq Bcl(U \cup V) \). Hence \(A \cup B \) is also \(B^{**} \)-open set in \(X \).

Remark 6.2.9 The following example shows that if \(A \) and \(B \) are \(B^{**} \)-open in \(X \), then \(A \cap B \) need not be \(B^{**} \)-open set in \(X \).

Example 6.2.10 Let \(X = \{a, b, c, d\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \), then \(A = \{a, d\} \) and \(B = \{b, d\} \) are \(B^{**} \)-open set in \(X \) and \(A \cap B = \{d\} \) is not a \(B^{**} \)-open set in \(X \) with a non open set \(\{a, c\} \).

Theorem 6.2.11 Let \(A \) be a \(B^{**} \)-open set in \(X \) and \(B \) be any set such that \(A \subseteq B \subseteq Bcl(int(A)) \) then \(B \) is also a \(B^{**} \)-open set in \(X \).
Proof. Given A is B^{**}-open set in X, therefore by Theorem 6.2.3 $A \subseteq Bcl(int(A))$. $A \subseteq B$ implies $int(A) \subseteq int(B)$, hence, $Bcl(int(A)) \subseteq Bcl(int(B))$. Therefore, $B \subseteq Bcl(int(A)) \subseteq Bcl(int(B))$. Hence B is a B^{**}-open set in X.

Theorem 6.2.12 Let X be a topological space and if A is B^{**}-open set in X, then A is semi open in X.

Proof. Given A is B^{**}-open set in X, therefore there exists an open set U such that $U \subseteq A \subseteq Bcl(U)$. Since $Bcl(U) \subseteq cl(U)$. Hence $U \subseteq A \subseteq cl(U)$, implies A is semi-open.

Remark 6.2.13 The converse of the above Theorem 6.2.12 need not be true for from the following example.

Example 6.2.14 Let $X = \{a, b, c, d\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, then $A = \{b, c, d\}$ is a semi open set but not a B^{**}-open set with a non open set $B = \{a, c\}$.

Remark 6.2.15 In T_2 space every semi open set is B^{**}-open set.

Theorem 6.2.16 Let $f : X \rightarrow Y$ be B-continuous open map. If A is a B^{**}-open set in X, then $f(A)$ is a semi open set in Y.

Proof. Given A is B^{**}-open set in X, therefore there exists an open set U such that $U \subseteq A \subseteq Bcl(U)$. Also we have $f(Bcl(A)) \subseteq cl(f(A))$. Hence $f(U) \subseteq f(A) \subseteq f(Bcl(U)) \subseteq cl(f(U))$. Since f is an open map, $f(U)$ is open in Y. This implies $f(A)$ is a semi open set in Y.

72
Theorem 6.2.17 Let $f : X \rightarrow Y$ be a homeomorphism from a topological space X into a topological space Y. If A is a B^{**}-open set in X, then $f(A)$ is B^{**}-open set in Y.

Proof. Given A is B^{**}-open set in X, therefore there exists an open set U such that $U \subseteq A \subseteq Bcl(U)$, implies $f(U) \subseteq f(A) \subseteq f(Bcl(U))$. Since f is a homeomorphism and also we have $f(Bcl(U)) \subseteq Bcl(f(U))$. Therefore $f(U) \subseteq f(A) \subseteq Bcl(f(U))$, and hence $f(A)$ is B^{**}-open set in Y. ■

Theorem 6.2.18 Let $f : X \rightarrow Y$ be a homeomorphism from a topological space X into a topological space Y. If A is a B^{**}-open set in Y, then $f^{-1}(A)$ is B^{**}-open in X.

Proof. Given A is B^{**}-open set in Y, therefore there exist an open set U in Y such that $U \subseteq A \subseteq Bcl(U)$ implies $f^{-1}(U) \subseteq f^{-1}(A) \subseteq f^{-1}(Bcl(U))$. Since f is a homeomorphism and also we have $f^{-1}(Bcl(U)) \subseteq Bcl(f^{-1}(U))$. Therefore $f^{-1}(U) \subseteq f^{-1}(A) \subseteq Bcl(f^{-1}(U))$, hence $f^{-1}(A)$ is B^{**}-open in X. ■

Definition 6.2.19 A subset A of X is said to be B^{**}-closed iff its complement is B^{**}-open set.

Definition 6.2.20 Let (X, τ) be a topological space. Let A be a subset of X. Then the B^{**}-closure of A is defined as intersection of all B^{**}-closed sets containing A and it is denoted by $B^{**}cl(A)$. That is $B^{**}cl(A) = \cap\{F : F$ is B^{**}-closed and $A \subseteq F\}$.

Remark 6.2.21 By the above Definition $B^{**}cl(A)$ is the smallest $B^{**}cl(A)$-closed set containing A. 73
Definition 6.2.22 Let \((x, \tau)\) be a topological space and let \(A\) be a subset of \(X\). Let \(x \in X\) is said to be \(B^{**}\)-limit point of \(A\) if and only if every \(B^{**}\)-open set containing \(x\) contains at least one point other than \(x\).

Definition 6.2.23 Let \(A\) be a subset of a topological space \((X, \tau)\). Then the set of all \(B^{**}\)-limit points of \(A\) is said to be \(B^{**}\)-derived set of \(A\) it is denoted by \(DB^{**}(A)\).

Theorem 6.2.24 Let \(A\) be a subset of a topological space \((X, \tau)\), then \(x \in B^{**}cl(A)\) iff every \(B^{**}\)-open set \(U\) contains \(x\) intersect with \(A\).

Proof. We prove this Theorem in contra positive way. If \(x \notin B^{**}cl(A)\), then \(x \in X - B^{**}cl(A)\). Let \(U = X - B^{**}cl(A)\) then by remark 6.2.21 \(U\) is \(B^{**}\)-open set which does not intersect \(A\). This implies \(x \notin B^{**}cl(A)\). Conversely, if \(U\) is \(B^{**}\)-open set of \(x\) which does not intersect with \(A\) then \(X - U\) is a \(B^{**}\)-closed set containing \(A\). This implies \(x \notin B^{**}cl(A)\).

Theorem 6.2.25 Let \(A\) be a subset of a topological space \((X, \tau)\), let \(DB^{**}(A)\) be set of all \(B^{**}\)-limit points of \(A\). Then \(B^{**}cl(A) = A \cup DB^{**}(A)\).

Proof. Let \(x \in A \cup DB^{**}(A)\), this implies either \(x \in A\) or \(x \in DB^{**}(A)\). If \(x \in A\), then \(x \in B^{**}cl(A)\). If \(x \in DB^{**}(A)\), then every \(B^{**}\)-open set contains \(x\) will intersect with \(A\). Therefore \(x \in B^{**}cl(A)\). This implies \(A \cup DB^{**}(A) \subseteq B^{**}cl(A)\).

If \(x \in B^{**}(A)\), then we have to prove \(x \in A \cup DB^{**}(A)\). If \(x \in A\) then \(x \in A \cup DB^{**}(A)\). If \(x \notin A\), since \(x \in B^{**}cl(A)\) implies every \(B^{**}\)-open set of \(x\) intersects with \(A\). Hence \(x \in DB^{**}(A)\). Therefore \(B^{**}cl(A) = A \cup DB^{**}(A)\).
6.3 \(B^{**} \)-Continuous Map

Definition 6.3.1 A function \(f : X \rightarrow Y \) is said to be \(B^{**} \)-continuous map if the inverse image of every open set in \(Y \) is \(B^{**} \)-open in \(X \).

Theorem 6.3.2 Let \(f : X \rightarrow Y \) be a continuous map from \(X \) into \(Y \) then it is \(B^{**} \)-continuous.

Proof. Let \(U \) be an open set in \(Y \). Since \(f \) is continuous, \(f^{-1}(U) \) is open in \(X \). By the remark 6.2.4 \(f^{-1}(U) \) is \(B^{**} \)-open in \(X \). Hence \(f \) is \(B^{**} \)-continuous. \(\blacksquare \)

Remark 6.3.3 The following example shows that the converse of the above Theorem 6.3.2 need not be true.

Example 6.3.4 Let \(X = \{a, b, c\} \) and \(\tau = \{X, \phi, \{a\}, \{a, b\}\} \), \(Y = \{p, q\} \) and \(\sigma = \{Y, \phi, \{p\}\} \). Let \(f : X \rightarrow Y \) be a map defined by \(f(a) = f(c) = p \), \(f(b) = q \), then \(f \) is \(B^{**} \)-continuous but it is not a continuous map.

Theorem 6.3.5 Let \(f : X \rightarrow Y \) be a mapping from a topological space \(X \) into a topological space \(Y \), then the following statements are equivalent

(i) \(f \) is \(B^{**} \)-continuous,

(ii) the inverse image of each closed set in \(Y \) is \(B^{**} \)-closed in \(X \).

Proof. \((i) \rightarrow (ii)\) Let \(C \) be any closed set in \(Y \), then \(Y - C \) is open in \(Y \). Since \(f \) is \(B^{**} \)-continuous, \(f^{-1}(Y - C) \) is \(B^{**} \)-open in \(X \). Therefore \(X - f^{-1}(C) \) is \(B^{**} \)-open in \(X \) which implies \(f^{-1}(C) \) is \(B^{**} \)-closed set in \(X \).
(ii) → (i) Let U be an open set in Y, then $Y - U$ is closed in Y. This implies $f^{-1}(Y - U)$ is B^{**}-closed in X, which implies $X - f^{-1}(U)$ is B^{**}-closed in X. Therefore $f^{-1}(U)$ is B^{**}-open in X. Hence f is B^{**}-continuous. \[\square\]

Theorem 6.3.6 If $f : X \to Y$ is a B^{**}-continuous map from X into Y then $f(B^{**}cl(A)) \subseteq cl(f(A))$.

Proof. Since $f(A) \subseteq cl(f(A))$, implies $A \subseteq f^{-1}(cl(f(A))$. But $cl(f(A))$ is a closed set in Y and f is B^{**}-continuous map. Therefore $f^{-1}(cl(f(A))$ is B^{**}-closed in X. Hence $B^{**}cl(A) \subseteq f^{-1}(cl(f(A)))$. Therefore $f(B^{**}cl(A)) \subseteq cl(f(A))$.

\[\square\]

Theorem 6.3.7 If $f : X \to Y$ be a mapping from a topological space X into a topological space Y, then the following statements are equivalent

(i) For each $x \in X$ and each open set V containing $f(x)$, there exists a B^{**}-open set U containing x such that $f(U) \subseteq V$

(ii) $f(B^{**}cl(A)) \subseteq cl(f(A))$ for all subset A of X.

Proof. (ii) → (i) Let $x \in X$ and V be an open set containing $f(x)$, then $f^{-1}(V)$ is B^{**}-open in X. Let $A = X - f^{-1}(V)$ then A is B^{**}-closed in X. Since $f(B^{**}cl(A)) \subseteq cl(f(A))$ implies $f(B^{**}cl(A)) \subseteq cl(f(X - f^{-1}(V))) \subseteq cl(Y - V) = V'$. Since $x \in V$, $x \notin V'$ hence $x \notin f(B^{**}cl(A))$. Therefore there exist a B^{**}-open set U of x such that $U \cap A' = \emptyset$ which implies $U \subseteq A'$. Hence $f(U) \subseteq f(A') \subseteq V$.

(i) ⇒ (ii) Let $y \in f(B^{**}cl(A))$, therefore, there exist $x \in B^{**}cl(A)$ such that $f(x) = y$. Let V be a any open set containing $f(x)$, then by hypothesis there exist a B^{**}-open set U containing x such that $f(U) \subseteq V$ and $U \cap A \neq \emptyset$ which
implies $f(U \cap A) \subseteq f(U) \cap f(A) \subseteq V \cap f(A) \neq \phi$. Therefore $x \in cl(f(A))$. Hence
\[f(B^{**}cl(A)) \subseteq clf(A). \]

6.4 Relation Between B^{**}-Continuous Maps and B^{**}-Irresolute Maps

Definition 6.4.1 A map $f : X \to Y$ is called B^{**}-irresolute if the inverse image of every B^{**}-open set of Y is B^{**}-open in X.

Remark 6.4.2 A map $f : X \to Y$ is B^{**}-irresolute map if and only if the inverse image of every B^{**}-closed set in Y is B^{**}-closed in X.

Theorem 6.4.3 If $f : X \to Y$ is a B^{**}-irresolute map, then f is B^{**}-continuous.

Proof. Let F be an open set in X. Since f is B^{**}-irresolute map, implies $f^{-1}(F)$ is B^{**}-open in X. Hence f is B^{**}-continuous.

Remark 6.4.4 The following example shows that the converse of the above Theorem 6.4.3 need not be true.

Example 6.4.5 Let $X = Y = \{a, b, c\}$, and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$. Let $f : X \to Y$ be a map defined by $f(a) = b$, $f(b) = c$ and $f(c) = a$ then f is B^{**}-continuous but B^{**}-irresolute with nonopen set $\{c\}$.

Theorem 6.4.6 Let $f : X \to Y$ be a B^{**}-continuous map from X into Y and Y is B^{**}-$T_{\frac{1}{2}}$-space then f is B^{**}-irresolute.
Proof. Let A be $B^\ast\ast$-open set in Y. Since Y is $B^\ast\ast$-T_2 implies A is an open set in Y. Since f is $B^\ast\ast$-continuous, implies $f^{-1}(A)$ is $B^\ast\ast$-open in X. Therefore, f is $B^\ast\ast$-irresolute map. \hfill

Theorem 6.4.7 Let X, Y, Z be any topological spaces. For any $B^\ast\ast$-irresolute map $f : X \to Y$ and any $B^\ast\ast$-irresolute map $g : Y \to Z$ then the composition $g \circ f : X \to Z$ is $B^\ast\ast$-irresolute.

Proof. Let U be a $B^\ast\ast$-open set in Z, then $g^{-1}(U)$ is $B^\ast\ast$-open in Y which implies $f^{-1}(g^{-1}(U))$ is $B^\ast\ast$-open in X. Therefore, $(g \circ f)^{-1}(U)$ is $B^\ast\ast$-open in X. Hence $g \circ f$ is $B^\ast\ast$-irresolute. \hfill

6.5 $B^\ast\ast$-Compact Sets

Definition 6.5.1 A collection $\{A_\alpha : \alpha \in J\}$ of $B^\ast\ast$-open sets is said to be $B^\ast\ast$-open cover for a subset B of X if $B \subseteq \bigcup \{A_\alpha : \alpha \in J\}$ holds.

Definition 6.5.2 A topological space X is said to be $B^\ast\ast$-compact if for every $B^\ast\ast$-open cover of X has finite subcover.

Definition 6.5.3 A subset B of X is said to be $B^\ast\ast$-compact relative to X, if for every collection $\{A_\alpha : \alpha \in J\}$ of $B^\ast\ast$-open subsets of X such that $B \subseteq \bigcup \{A_\alpha : \alpha \in J\}$, then there exists a finite subcollection such that $B \subseteq A_1 \cup A_2 \cup \ldots \cup A_n$.

Theorem 6.5.4 If A is $B^\ast\ast$-closed subset of a $B^\ast\ast$-compact space X, then A is $B^\ast\ast$-compact relative to X.
Proof. Let \(A \) be a \(B^{**} \)-closed subset of \(X \). Then \(A' \) is a \(B^{**} \)-open set in \(X \). Let \(\{ A_\alpha : \alpha \in J \} \) be a \(B^{**} \)-open cover for \(A \), then \(\{ A'_\alpha : A_\alpha \in \alpha \in J \} \) forms a \(B^{**} \)-open cover for \(X \). Since \(X \) is a \(B^{**} \)-compact, then \(B^{**} \)-open cover has a finite subcover \(\{ G_1, G_2, \ldots, G_n \} \). If this finite subcover contains \(A' \) discard it otherwise leave the subcover as it is. Thus we obtained a finite \(B^{**} \)-open subcover for \(A \). Therefore \(A \) is compact relative to \(X \).

Theorem 6.5.5 The \(B^{**} \)-continuous image of \(B^{**} \)-compact space is compact.

Proof. Let \(f : X \rightarrow Y \) be \(B^{**} \)-continuous map from \(X \) onto \(Y \). Let \(\{ A_\alpha : \alpha \in J \} \) be an open cover for \(Y \). Then \(\{ f^{-1}(A_\alpha) : \alpha \in J \} \) is a \(B^{**} \)-open cover for \(X \). Since \(X \) is \(B^{**} \)-compact. Therefore this \(B^{**} \)-open cover of \(X \) has a finite subcover \(\{ f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n) \} \). Since \(f \) is onto \(\{ A_1, A_2, \ldots, A_n \} \) be an open cover of \(Y \). Therefore \(Y \) is compact.

Theorem 6.5.6 If \(f : X \rightarrow Y \) is \(B^{**} \)-irresolute map and a subset \(B \) of \(X \) is \(B^{**} \)-compact relative to \(X \), then the image \(f(B) \) is compact relative to \(Y \).

Proof. Given \(f : X \rightarrow Y \) is \(B^{**} \)-irresolute map from \(X \) onto \(Y \). Let \(\{ A_\alpha : \alpha \in J \} \) be an \(B^{**} \)-open cover for \(f(B) \) relative to \(Y \). Then \(\{ f^{-1}(A_\alpha) : \alpha \in J \} \) is a \(B^{**} \)-open cover for \(B \) relative to \(X \). Since \(B \) is \(B^{**} \)-compact relative to \(X \), this \(B^{**} \)-open cover has a finite subcover \(\{ f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n) \} \). Since \(f \) is onto, therefore \(\{ A_1, A_2, \ldots, A_n \} \) is \(B^{**} \)-open cover for \(f(B) \). Hence \(f(B) \) is \(B^{**} \)-compact.
6.6 B^{**}-Connected Sets

Definition 6.6.1 A topological space X is said to be B^{**}-connected if X cannot be written as disjoint union of two nonempty B^{**}-open sets. A subset of X is B^{**}-connected if it is B^{**}-connected as a subspace.

Theorem 6.6.2 For a topological space X, the following statements are equivalent.

(i) X is B^{**}-connected.

(ii) The only subsets of X which are both B^{**}-open and B^{**}-closed are empty set and X.

(iii) Every B^{**}-continuous map of X into a discrete space Y with at least two points is a constant map.

Proof. (i) \Rightarrow (ii) Let U be a B^{**}-open and B^{**}-closed subset of X, then $X - U$ is both B^{**}-open and B^{**}-closed. Since X is the disjoint union of B^{**}-open set U and $X - U$ implies one of these must be empty, that is $U = \emptyset$ or $X - U = \emptyset$.

(ii) \Rightarrow (i) Suppose $X = A \cup B$ where A and B are disjoint non-empty B^{**}-open set of X, then $A = X - B$ is B^{**}-closed. Hence A is both B^{**}-open and B^{**}-closed subset of X, by assumption $A = \emptyset$ or $A = X$. This implies X is B^{**}-connected.

(ii) \Rightarrow (iii) Let $f : X \rightarrow Y$ be a B^{**}-continuous, then X is covered by B^{**}-open and B^{**}-closed covering $\{f^{-1}(y) : y \in Y\}$. By assumption $f^{-1}(y) = \emptyset$, then f fails to be B^{**}-continuous. Therefore, $f^{-1}(y) = X$. This implies f is a constant map.

(iii) \Rightarrow (ii) Let U be both B^{**}-open and B^{**}-closed in X. Suppose $U \neq \emptyset$. Let
$f : X \to Y$ be B^{**}-continuous map defined by $f(U) = \{y\}$ and $f(X - U) = \{w\}$ for some distinct points y and w in Y. By assumption f is a constant map, therefore, we have $U = X$.

Theorem 6.6.3 (i) If $f : X \to Y$ is a B^{**}-continuous surjection map and X is B^{**}-connected, then Y is connected. (ii) If $f : X \to Y$ is a B^{**}-irresolute surjection map and X is B^{**}-connected, then Y is B^{**}-connected.

Proof. (i) Suppose that Y is not connected, then $Y = A \cup B$, where A and B are disjoint nonempty open sets in Y. Since f is B^{**}-continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$ where $f^{-1}(A) \cup f^{-1}(B)$ are disjoint nonempty B^{**}-open sets which is a contradiction to our assumption, that X is B^{**}-connected. Hence Y is connected.

(ii) It follows from the definition 6.6.1.

6.7 B^{**}-Homeomorphism

Definition 6.7.1 A map $f : X \to Y$ is said to be B^{**}-open map if $f(U)$ is B^{**}-open in Y for every open set U in X.

Theorem 6.7.2 If $f : X \to Y$ is an open map, then it is B^{**}-open map.

Proof. Given $f : X \to Y$ is an open map. Let G be any open set in X, then $f(G)$ is open in Y. By remark 6.2.4 $f(G)$ is B^{**}-open in Y. Hence f is B^{**}-open map.
Remark 6.7.3 The following example shows that the converse of the above Theorem 6.7.2 need not be true.

Example 6.7.4 Let $X = Y = \{a, b, c\}$, and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\} \{a, b\}\}$, then define $f : X \to Y$ as $f(a) = a$, $f(b) = c$ and $f(c) = b$ then f is B^{**}-open but not open from X into Y.

Definition 6.7.5 A map $f : X \to Y$ is said to be B^{**}-closed map if $f(U)$ is B^{**}-closed in Y for every closed set U in X.

Remark 6.7.6 If $f : X \to Y$ is closed map then it is a B^{**}-closed map and converse need not be true.

Proof. Similar proof of the above Theorem 6.7.2.

Definition 6.7.7 A bijection map $f : (X, \tau) \to (Y, \sigma)$ is called B^{**}-homeomorphism if f is both B^{**}-continuous and B^{**}-open.

Remark 6.7.8 Every homeomorphism is a B^{**}-homeomorphism but converse need not be true.

Theorem 6.7.9 For any bijection map $f : X \to Y$ the following statement are equivalent: (i) the inverse map $f^{-1} : Y \to X$ is B^{**}-continuous, (ii) f is B^{**}-open map, (iii) f is B^{**}-closed map.

Proof. $(i) \Rightarrow (ii)$ Let G be any open set in X. Since f^{-1} is B^{**}-continuous, the inverse image of G under f^{-1}, namely $f(G)$ is B^{**}-open in Y. Hence f is B^{**}-open map.
(ii) ⇒ (iii) Let F be any closed set in X, then F' is open in X. Since f is B^{**}-open map, $f(F')$ is B^{**}-open in Y. But $f(F') = Y - f(F)$ implies $f(F)$ is B^{**}-closed set in Y. Therefore f is B^{**}-closed map.

(iii) ⇒ (i) Let F be any closed set in X. Then the inverse image of F under f^{-1}, namely $f(F)$ is B^{**}-closed in Y. Since f is a B^{**}-closed map. Therefore f is B^{**}-continuous.

Theorem 6.7.10 Let $f : (X, \tau) \to (Y, \sigma)$ be a bijection and B^{**}-continuous map, then the following statements are equivalent

(i) f is B^{**}-open map.

(ii) f is B^{**}-homeomorphism. (iii) f is B^{**}-closed map.

Proof. (i) ⇒ (ii) By assumption, f is bijective, B^{**}-continuous and B^{**}-open. Then by definition, f is a B^{**}-homeomorphism.

(ii) ⇒ (iii) By assumption, f is B^{**}-open and bijective, By Theorem 6.7.9 f is B^{**}-closed map.

(iii) ⇒ (i) By assumption, f is B^{**}-closed and bijective, By Theorem 6.7.9 f is a B^{**}-open map.