CONTENTS

List of Tables	VII
List of Figures	IX
List of Abbreviations	XI

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1: Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Research envisaged</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>

CHAPTER 2: LITERATURE REVIEW

2.1 HUMAN RESPIRATORY SYSTEM

2.1.1 Pulmonary ventilation | 14 |
2.1.2 Major components of the lung - barriers to drug absorption | 17 |
2.1.2.1 Epithelium | 17 |
2.1.2.2 Endothelium | 18 |
2.1.2.3 Alveolar macrophages | 18 |
2.1.2.4 Interstitium and basement membrane | 18 |
2.1.2.5 Lymphatic system | 19 |
2.1.2.6 Epithelial lining fluid | 19 |
2.1.2.7 Surfactant | 20 |
2.1.2.8 Mucociliary clearance | 20 |
2.1.2.9 Patho-physiological changes | 21 |
2.1.2.10 Particle deposition | 21 |
2.1.3 Inhaler devices | 22 |
2.1.3.1 Nebulizers | 22 |
2.1.3.2 Pressurized metered dose inhalers | 24 |
2.1.3.3 Dry powder inhalers | 24 |
2.1.4 Factors influencing DPI formulation design | 25 |
2.1.4.1 Physical properties of powders | 25 |
2.1.4.2 Drug carrier | 27 |
2.1.4.3 Particle engineering | 28 |
2.1.4.4 Metering design | 29 |
2.1.4.5 Flow path design | 31 |
2.1.5 Regulatory and pharmacopoeial requirements | 32 |

2.2 TUBERCULOSIS

2.2.1 Etiologic agent | 35 |
2.2.2 Epidemiology | 35 |
2.2.3 Exposure to infection | 36 |
2.2.4 Infection to disease | 36 |
2.2.5 Strategies for Tuberculosis Control | 36 |
2.2.6 Detection and treatment of infectious cases | 37 |
2.2.7 Treatment failure and relapse | 38 |
2.2.8 Dual Crises: Tuberculosis and HIV | 38 |
2.2.9 Diversity | 39 |

2.3 LIPOSOMES

2.3.1 Composition of liposomes | 40 |
2.3.1.1 Phospholipids | 40 |
2.3.1.2 Sterols | 40 |
2.3.1.3 Antioxidant | 42 |
3.4.2.1 Solutions 88
3.4.2.2 Procedure for calibration curve 88
3.4.2.3 Stability and selectivity 89
3.4.2.4 Estimation of cholesterol from liposomes/supernatant 89
3.4.3 Estimation of Isoniazid 90
3.4.3.1 Solutions 90
3.4.3.2 Procedure for calibration curve 90
3.4.3.3 Stability and selectivity 91
3.4.3.4 Estimation of Isoniazid from liposomes/supernatant 91
3.4.3.5 Estimation of INH from LDPI formulations 91
3.4.3.6 Estimation of INH retention and vesicle size determination in liposomal DPI formulations during stability studies 92
3.4.3.7 Estimation of INH in dispersion medium 92
3.4.3.8 Estimation of INH in in-vitro deposition and in-vivo biological fluid and tissues 93
3.4.4 Estimation of Rifampicin 94
3.4.4.1 Solutions 94
3.4.4.2 Procedure for calibration curve 94
3.4.4.3 Stability and selectivity 94
3.4.4.4 Estimation of Rifampicin from liposomes/supernatant 94
3.4.4.5 Estimation of RFP from LDPI formulations 95
3.4.4.6 Estimation of RFP retention and vesicle size determination in liposomal DPI formulations during stability studies 95
3.4.4.7 Estimation of RFP in dispersion medium 96
3.4.4.8 Estimation of RFP in in-vitro deposition and in-vivo biological fluid and tissues 96
3.4.5 Estimation of water content and trapped volume 97
3.5 RESULTS AND DISCUSSION 98
3.5.1 Estimation of phosphatidyl choline 98
3.5.2 Estimation of cholesterol 99
3.5.3 Estimation of Isoniazid 100
3.5.4 Estimation of Rifampicin 101
3.6 REFERENCES 102
CHAPTER 4: PREPARATION AND CHARACTERIZATION OF LIPOSOMES
4.1 INTRODUCTION 104
4.2 MATERIALS AND EQUIPMENTS 106
4.3 PREPARATION OF INH LIPOSOMES BY TFH 106
4.4 PREPARATION OF INH LIPOSOMES BY REV 107
4.5 DRUG LOADING 107
4.6 PREPARATION OF RFP LIPOSOMES BY TFH 111
4.7 PREPARATION OF RFP LIPOSOMES BY REV 111
4.8 PARTICLE SIZE REDUCTION AND SEPARATION OF UNENTRAPPED DRUG 115
4.9 LIPOSOME CHARACTERIZATION 115
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.1</td>
<td>Trapped volume</td>
<td>115</td>
</tr>
<tr>
<td>4.9.2</td>
<td>Liposome size</td>
<td>116</td>
</tr>
<tr>
<td>4.9.3</td>
<td>Shape and lamellarity</td>
<td>116</td>
</tr>
<tr>
<td>4.9.4</td>
<td>Percent drug entrapment</td>
<td>116</td>
</tr>
<tr>
<td>4.10</td>
<td>STATISTICAL ANALYSIS</td>
<td>117</td>
</tr>
<tr>
<td>4.11</td>
<td>RESULTS AND DISCUSSION</td>
<td>117</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Optimization of TFH and REV methods process variables</td>
<td>117</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Optimization of THF and REV methods formulation variables</td>
<td>121</td>
</tr>
<tr>
<td>4.11.3</td>
<td>Drug (INH) loading</td>
<td>124</td>
</tr>
<tr>
<td>4.11.3.1</td>
<td>Preparation of INH-Ethylene Diamine Tetra Acetic acid complex</td>
<td>124</td>
</tr>
<tr>
<td>4.11.3.2</td>
<td>Optimization of transmembrane loading of INH in to liposomes</td>
<td>124</td>
</tr>
<tr>
<td>4.11.4</td>
<td>Selection of method for liposome size reduction and separation of unentrapped drug</td>
<td>130</td>
</tr>
<tr>
<td>4.11.4.1</td>
<td>Liposomal particle size reduction method</td>
<td>130</td>
</tr>
<tr>
<td>4.11.4.2</td>
<td>Selection of method for separation of unentrapped drug</td>
<td>130</td>
</tr>
<tr>
<td>4.11.5</td>
<td>Characterization of liposomes</td>
<td>131</td>
</tr>
<tr>
<td>4.11.5.1</td>
<td>Trapped volume</td>
<td>131</td>
</tr>
<tr>
<td>4.11.5.2</td>
<td>Liposomal size</td>
<td>134</td>
</tr>
<tr>
<td>4.11.5.3</td>
<td>Photomicrography</td>
<td>134</td>
</tr>
<tr>
<td>4.11.5.4</td>
<td>Percent drug entrapment</td>
<td>134</td>
</tr>
<tr>
<td>4.12</td>
<td>REFERENCES</td>
<td>135</td>
</tr>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>138</td>
</tr>
<tr>
<td>5.2</td>
<td>LYOPHILIZATION OF LIPOSOMES</td>
<td>141</td>
</tr>
<tr>
<td>5.2.1</td>
<td>INH liposomes</td>
<td>141</td>
</tr>
<tr>
<td>5.2.2</td>
<td>RFP liposomes</td>
<td>144</td>
</tr>
<tr>
<td>5.3</td>
<td>METHOD OF PREPARATION OF LIPOSOMAL DRY POWDER INHALER FORMULATIONS</td>
<td>144</td>
</tr>
<tr>
<td>5.3.1</td>
<td>INH LDPI formulation</td>
<td>145</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>Effect of carrier mass ratio</td>
<td>145</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Effect of adding fines</td>
<td>145</td>
</tr>
<tr>
<td>5.3.1.3</td>
<td>Effect of adding sequence of fine</td>
<td>145</td>
</tr>
<tr>
<td>5.3.2</td>
<td>RFP LDPI formulation</td>
<td>146</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Effect of carrier mass ratio</td>
<td>146</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>Effect of adding fines</td>
<td>146</td>
</tr>
<tr>
<td>5.3.2.3</td>
<td>Effect of adding sequence of fine</td>
<td>146</td>
</tr>
<tr>
<td>5.4</td>
<td>LDPI FORMULATION CHARACTERIZATION</td>
<td>149</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Angle of repose</td>
<td>149</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Compressibility index</td>
<td>149</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Particle size determination</td>
<td>149</td>
</tr>
<tr>
<td>5.4.3.1</td>
<td>Rehydrated liposomal particle size determination</td>
<td>149</td>
</tr>
<tr>
<td>5.4.3.2</td>
<td>Liposomal Dry Powder particle size determination</td>
<td>149</td>
</tr>
<tr>
<td>5.4.3.3</td>
<td>Mass Median Aerodynamic particle size determination</td>
<td>150</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Photomicrography</td>
<td>150</td>
</tr>
</tbody>
</table>
5.4.5 SEM photomicrographs 150
5.4.6 Fine particle fraction 151
5.4.7 Residual water content and moisture sorption determination 152
5.4.8 Percent drug retained 152
5.5 STATISTICAL ANALYSIS 152
5.6 RESULTS AND DISCUSSION 153
5.6.1 Optimization of lyophilization of liposomes 153
5.6.1.1 Selection of cryoprotectant 153
5.6.1.2 Phase of cryoprotectant addition 154
5.6.1.3 Mass ratio of lipid: sucrose 155
5.6.2 Optimization of LDPI formulation 156
5.6.2.1 Effect of carrier particle ratio 156
5.6.2.2 Effect of fine particle addition and addition sequence 157
5.6.3 Characterization of LDPI formulations 158
5.6.3.1 Angle of repose and compressibility index 158
5.6.3.2 Particle size characterization 158
5.6.3.3 Photomicrography and SEM photomicrographs 162
5.6.3.4 Fine particle fraction 165
5.6.3.5 Residual water content and moisture sorption determination 167
5.6.4 Percent drug retained 167
5.7 REFERENCES 170

CHAPTER 6: STABILITY TESTING OF LIPOSOMAL DRY POWDER INHALER FORMULATIONS
6.1 INTRODUCTION 176
6.2 METHOD 176
6.3 STATISTICAL ANALYSIS 177
6.4 RESULTS AND DISCUSSION 182
5.4.1 Stability of INH LDPI formulations 182
5.4.2 Stability of RFP LDPI formulations 183
6.5 REFERENCES 189

CHAPTER 7: IN VITRO DIFFUSION STUDIES
7.1 INTRODUCTION 191
7.2 DRUG DIFFUSION STUDIES ACROSS ARTIFICIAL MEMBRANE
7.2.1 Experimental setup 192
7.2.1.1 Artificial membrane 192
7.2.1.2 Design of diffusion cell 192
7.2.1.3 Validation of diffusion cell 192
7.2.1.4 Selection of diffusion medium 193
7.2.2 Method 193
7.3 IN VITRO ALVEOLAR MACROPHAGES UPTAKE STUDIES 193
7.3.1 Method 193
7.4 DATA AND STATISTICAL ANALYSIS 194
7.5 RESULTS AND DISCUSSION 195
7.6 REFERENCES 201

CHAPTER 8: IN VIVO STUDIES
8.1 INTRODUCTION 203