LIST OF FIGURES

Fig 1.1 Classification of ceramics
Fig 1.2 Schematic outline of the sol gel process and comparison of colloidal and polymeric routes
Fig 1.3 Structure of complexes formed during the precipitation of aluminium hydroxide from metal salt solution.
Fig 1.4 Sequence of α-alumina formation with temperature from different alumina precursors.
Fig 1.5 Epitaxial nucleation of stable α-phase on substrate α' in contact with unstable θ phase
Fig 1.6 Geometry of the problem
Fig 2.1 Flowchart showing the preparation of sol gel alumina-SiC nanocomposites
Fig 2.2 Sintering schedule followed for Alumina-SiC nanocomposites.
Fig 2.3 Schematic illustration of a four point bending fixture
Fig 2.4 A typical gas pressure sintering cycle
Fig 3.1 Thermal Analysis data of as received SiC powders
Fig 3.2 FTIR pattern of as received SiC powders
Fig 3.3 FTIR pattern of SiC powders heat treated at 650°C/30min.
Fig 3.4 FTIR pattern of SiC powders after thermal activation and HF leaching
Fig 3.5 FTIR pattern of SiC-25 wt% alumina powders (gel)
Fig 3.6 FTIR pattern of SiC-25 wt% alumina powders calcined at 500°C
Fig 3.7 Plot of surface area values with increasing alumina weight fraction
Fig 3.8a Adsorption isotherms of SiC powders coated with varying weight fraction of alumina (gel)
Fig 3.8b Adsorption isotherms of SiC powders coated with varying weight fraction of alumina (calcined at 500°C)
Fig 3.9a t-plot analysis of coated SiC powders before calcination
Fig 3.9b t-plot analysis of coated SiC powders after calcination at 500°C
Fig 3.10 TEM pictures of a) Uncoated SiC b) SiC-5 wt% alumina calcined at 500°C c) SiC-15 wt% alumina calcined at 500°C d) SiC-25 wt% alumina calcined at 500°C.
Fig 3.11 TEM picture of SiC particles coated with 25 wt% alumina (gel).
Fig 3.12 Zeta Potential as a function of pH for SiC particles coated with alumina compared with that of uncoated SiC and pure alumina.
Fig 3.13 Thermal analysis pattern of as received boehmite powders.
Fig 3.14 Thermal analysis of boehmite gel seeded with 2 wt% α-alumina seeds.
Fig 3.15 Thermal analysis pattern of alumina-5vol% SiC composite precursor seeded with 2 wt% α-alumina seeds.
Fig 3.16 XRD pattern of the phases formed on calcination of alumina-5 vol% SiC seeded precursor at different temperatures.
Fig 3.17a Dependence of calcination conditions on green density.
Fig 3.17b Dependence of calcination conditions on sintered density.
Fig 3.18a Shrinkage profile of sol gel composite precursor calcined at 1000°C.
Fig 3.18b Shrinkage profile of sol gel composite precursor calcined at 900°C.
Fig 3.18c Shrinkage profile of sol gel composite precursor calcined at 800°C.
Fig 3.19 FTIR pattern of alumina-SiC composite precursor calcined at 1000°C.
Fig 3.20 Effect of CIP Pressure on green and sintered densities.
Fig 3.21 Variation of α-alumina formation temperatures with % amount of seeds.
Fig 3.22 Sintered density with temperature for seeded and unseeded samples.
Fig 3.23 Densification data of monolithic alumina and nanocomposite.
Fig 3.24 SEM picture of polished and thermally etched monolithic alumina.
Fig 3.25a SEM picture of alumina-5vol% SiC sintered at 1550°C/1h.
Fig 3.25b SEM picture of alumina-5vol% SiC sintered at 1550°C/1h (higher magnification).
Fig 3.26a SEM micrograph of alumina-5vol% SiC nanocomposite sintered at 1650°C/1h.
Fig 3.26b SEM micrograph of alumina-5vol% SiC nanocomposite sintered at 1650°C/1h (higher magnification).
Fig 3.27 AFM picture of alumina-5 vol% SiC nanocomposite sintered at 1650°C/1h
a) lower magnification b) higher magnification

Fig 3.28a SEM picture of alumina-5 vol% SiC nanocomposite sintered at 1700°C/90 min.

Fig 3.28b SEM picture of alumina-5 vol% SiC nanocomposite sintered at 1700°C/90 min. (higher magnification)

Fig 3.29 AFM picture of alumina-5 vol% SiC nanocomposite sintered at 1700°C/90 min. a) lower magnification b) higher magnification

Fig 3.30a Fracture surface of sintered monolithic alumina

Fig 3.30b Fracture surface of sintered alumina-5 vol% SiC nanocomposite

Fig 3.31a SEM picture of an unseeded composite sample sintered at 1550°C/60 min.

Fig 3.31b SEM picture of an unseeded composite sample sintered at 1650°C/60 min.

Fig 3.31c SEM picture of an unseeded composite sample sintered at 1700°C/90 min.

Fig 3.32 Four point bend strength values of alumina-5 vol% SiC nanocomposites
with sintering temperature

Fig 3.33 XRD patterns of the various composite precursors

Fig 3.34a Shrinkage profile of α-alumina + SiC mixture

Fig 3.34b Shrinkage profile of sol gel composite precursor calcined at 1000°C

Fig 3.34c Shrinkage profile of transition alumina + SiC mixture

Fig 3.35 Variation in densities of composite precursors a) green b) on sintering at
1700°C/90 min

Fig 3.36 Densification behaviour of MgO doped and undoped nanocomposites

Fig 3.37a AFM picture of undoped alumina

Fig 3.37b AFM picture of MgO doped alumina

Fig 3.38a SEM picture of chemically etched alumina-5 vol% SiC doped with 1 wt%
MgO sintered at 1450°C/1h

Fig 3.38b SEM picture of chemically etched alumina-5 vol% SiC doped with 1 wt%
MgO sintered at 1550°C/1h

Fig 3.38c SEM picture of chemically etched alumina-5 vol% SiC doped with 1 wt%
MgO sintered at 1650°C/1h

Fig 4.1 Schematic illustration of the coating process
Fig 4.2	Increase in isoelectric points (IEP) of alumina coated SiC particles
Fig 4.3	AFM picture of a) sintered alumina b) nanocomposite
Fig 4.4a	TEM picture of sol gel derived alumina-SiC nanocomposite
Fig 4.4b	TEM picture of nanocomposite showing SiC particles within grain
Fig 4.5a	SEM picture of sol gel derived alumina-SiC nanocomposite
Fig 4.5b	SEM picture of nanocomposite derived from tamed alumina + SiC mixture
Fig 4.6	Schematic illustration of the sol gel coated process compared with conventional powder mixing route a) sol gel coated b) powder mixing
Fig 4.7	SEM picture of a typical processing flaw in nanocomposite