CONTENTS

Abstract i
Acknowledgements iv
Contents vi
List of Tables x
List of Figures xi

CHAPTER 1: INTRODUCTION
1.1 IMPORTANCE OF AI-Si ALLOYS 2
1.2 AI-Si ALLOY SYSTEM 2
1.3 RECYCLING OF ALUMINIUM AND ITS ALLOYS 4

CHAPTER 2: LITERATURE REVIEW
2.1 INTRODUCTION 8
2.2 PARAMETERS INFLUENCING THE STRUCTURE AND PROPERTIES OF AI-Si-Mg CAST ALLOYS 8

2.2.1 Alloy Composition 8
 2.2.1.1 Major alloying elements 8
 2.2.1.2 Trace alloying elements 9
 2.2.1.3 Al-7Si-0.3Mg alloy 11
2.2.2 Solidification Characteristics 11
2.2.3 Casting Defects and their Control 14
 2.2.3.1 Gas porosity 16
 2.2.3.2 Shrinkage porosity 19
2.2.4 Melt Treatments 20
 2.2.4.1 Degassing 20
 2.2.4.2 Modification 21
 2.2.4.3 Grain refinement 29
2.2.5 Effect of Alloaying Elements on the Castability of Aluminium Alloys 30
 2.2.5.1 Formation of oxides and their effects 30
 2.2.5.2 Fluidity 31
2.2.6 Heat Treatment 34
 2.2.6.1 Temper selection 34
2.2.6.2 Solution heat treatment

2.2.6.3 Quenching

2.2.6.4 Aging

2.3 IMPURITIES IN CAST Al-Si ALLOYS

2.4 IRON IN CAST Al-Si ALLOYS

2.4.1 Aluminium – Iron system

2.4.2. Iron Intermetallic Phases

2.4.3. Effect of Fe on the Properties of Al-Si Alloys

2.4.3.1 Physical properties

2.4.3.2 Thermal conductivity

2.4.3.3 Corrosion resistance

2.4.3.4 Mechanical properties

2.4.4. Techniques to Neutralize the ill Effects of Fe in Al-Si Alloys

2.4.4.1 Rapid solidification

2.4.4.2 Melt superheating

2.4.4.3 Low temperature working

2.4.4.4 Chemical neutralizers

2.5 INTERACTION OF TRACE ELEMENTS

2.6 APPLICATIONS OF Al-7Si-0.3Mg ALLOY

2.7 GENERAL DISCUSSION

2.8 SUMMARY

2.9 SCOPE OF THE PRESENT INVESTIGATION

CHAPTER 3: MATERIALS AND EXPERIMENTAL DETAILS

3.1 MATERIALS

3.2 MELTING AND CASTING

3.3 HEAT TREATMENT

3.4 CHEMICAL ANALYSIS

3.5 THERMAL ANALYSIS

3.6 DIFFERENTIAL THERMAL ANALYSIS (DTA)
3.7 PHYSICAL CHARACTERISTICS 71
3.7.1 Density Measurement and Porosity Calculation 71
3.7.2 Electrical Conductivity 71

3.8 MECHANICAL CHARACTERISTICS 72

3.9 STRUCTURAL STUDIES 72
3.9.1. Optical Microscopy 72
3.9.2. Image Analysis 74

CHAPTER 4: EFFECT OF CALCIUM IN Al-7Si-0.3Mg ALLOY 75
4.1 MODIFICATION 75
4.1.1 Methodology 75
4.1.2 Results and Discussion 76
4.1.2.1 Microstructure 76
4.1.2.2 Physical characteristics 76
4.1.2.3 Mechanical properties 80
4.1.3 SUMMARY 82

4.2 IRON NEUTRALIZATION 84
4.2.1 Methodology 84
4.2.2 Results 84
4.2.2.1 Microstructure 84
4.2.2.2 Physical characteristics 89
4.2.2.3 Mechanical properties 94
4.2.3 Empirical Analysis of Data 102
4.2.4 Discussion 106
4.2.5 Summary 110

CHAPTER 5: EFFECT OF Mn, Be AND Sr AND THEIR INTERACTION WITH Ca IN Al-7Si-0.3Mg-xFe ALLOY 111
5.1 INTRODUCTION 111
5.2 METHODOLOGY 111
5.3 RESULTS 112
5.3.1 Microstructure 112
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.1</td>
<td>Microstructure</td>
<td>112</td>
</tr>
<tr>
<td>5.3.1.1</td>
<td>Effect of Mn, Be and Sr</td>
<td>112</td>
</tr>
<tr>
<td>5.3.1.2</td>
<td>Interaction of Mn, Be, Sr and Ca</td>
<td>115</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Solidification Behaviour</td>
<td>128</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Thermal analysis</td>
<td>128</td>
</tr>
<tr>
<td>5.3.2.2</td>
<td>Differential thermal analysis</td>
<td>128</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Physical Characteristics</td>
<td>138</td>
</tr>
<tr>
<td>5.3.3.1</td>
<td>Porosity</td>
<td>138</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Electrical conductivity</td>
<td>138</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Mechanical Properties</td>
<td>139</td>
</tr>
<tr>
<td>5.3.4.1</td>
<td>Tensile properties</td>
<td>139</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>Impact strength</td>
<td>142</td>
</tr>
<tr>
<td>5.4</td>
<td>DISCUSSION</td>
<td>145</td>
</tr>
<tr>
<td>5.5</td>
<td>SUMMARY</td>
<td>150</td>
</tr>
</tbody>
</table>

CHAPTER 6: CONCLUSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>SIGNIFICANT CONTRIBUTIONS OF THE PRESENT INVESTIGATION TO THE KNOWLEDGE</td>
<td>153</td>
</tr>
<tr>
<td>6.2</td>
<td>AVENUES FOR FUTURE WORK</td>
<td>153</td>
</tr>
</tbody>
</table>

REFERENCES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>

AWARDS AND PUBLICATIONS BASED ON THE THESIS WORK

171