Appendix

Matlab Code for the Computation of Controlled Trajectories and Steering Control of MSOL System

% System Considered : x'' + A^-2 x = Bu
% A : Constant Matrix of order n x n
% B : Constant Vector of size n
% m : parameter taken as mentioned in Algorithm 3.5.1
% n : order of A
% x0 : Initial State - column vector of size n
% y0 : Initial Velocity - column vector of size n
% x1 : Final State - column vector of size n
% T : Final time (system should reach x1 from x0 in interval [0,T])
% W_0_T : Controllability Grammian
% sinnew() and cosinenew() : Functions computing Matrix Sine and Cosine using Pade Approximation (developed inhouse)
% intt() : function to compute integration numerically

%------------------------------
% 109
while(1)
 clear clc
 disp('Linear System x'' + A^-2 x = Bu where A and B are given as follows:')
 A = input('Enter the matrix A');
 B = input('Enter the column vector B');
 m = input('Enter the value of m');
 n = input('Enter the order of the matrix');
 d = det(A);
 pause
 disp('The controllability Matrix of the system is:')
 C = B;
 Q = B;
 AS = A^-2;
 for i=1:n-1
 C = (AS^-i)*B
 Q = [Q C]
 end
 pause
 disp('The rank of the controllability matrix is:')
 r = rank(Q)
 if(r == n) % Checking necessary condition
 disp('The initial state is:')
 x0 = input('Enter the initial state column vector');
```matlab
y0 = input('Enter the initial velocity column vector');
pause
disp('The final state is:')
xl = input('Enter the final state column vector');
pause
disp('We want to reach the final state in time')
T = input('Enter the time to reach the final state');
pause

% The Controllability Grammian:
W_0_T = intt('inv(A)*sinenew(A*(t-s),3,10)*B*transpose(B)*
transpose(inv(A)*sinenew(A*(t-s),3,10))',A,B,n,T,0,0);
i=0;

% The Solution and the steering Control of MSOL:
for t = 0:0.01:T
  i = i+1;
  ss = intt('inv(A)*sinenew(A*(t-s),3,10)*B*transpose(B)*
transpose(inv(A)*sinenew(A*(2-s),3,10))',A,B,n,t,0,0);
  u(:,i) = B'*inv(A)*sinenew(A*(T-t),3,10)*y0;
  x(:,i) = cosinenew(A*t,3,10)*x0 + inv(A)*sinenew(A*t,3,10)*y0 + ss*inv(W_0_T)*(x1 - cosinenew(A*T,3,10)*x0 -inv(A)*
sinenew(A*T,3,10)*y0);
end

% Plotting the graph of the solution and the steering control:
t = 0:0.01:T;
subplot(2,1,1), plot(t,x(:,1),'.r')
hold on
```
subplot(2,1,1), plot(t,x(2,:),'b')
hold on
subplot(2,1,1), plot(t,x(3,:),'g')
hold off
xlabel('TIME t')
ylabel('STATE x(t)')
title('CONTROLLED TRAJECTORIES OF THE "MSOL" SYSTEM')
grid on
subplot(2,1,2), plot(t,u)
grid on
xlabel('TIME t')
ylabel('STEERING CONTROL u(t)')
title('THE GRAPH OF THE STEERING CONTROL')
else
ans= input ('The system is not controllable. Would you like to try other system (y/n)?')
if(ans == 'y')
 continue;
else
 break;
end
Matlab Code for the Computation of Controlled Trajectories and Steering Control of MSON System

%--
% System Considered : $x'' + A^{-2} x = Bu + f(t,x)$
% A : Constant Matrix of order $n \times n$
% B : Constant Vector of size n
% f : Nonlinear function
% m : parameter taken as mentioned in Algorithm 3.5.1
% n : order of A
% x_0 : Initial State - column vector of size n
% y_0 : Initial Velocity - column vector of size n
% x_1 : Final State - column vector of size n
% T : Final time (system should reach x_1 from x_0 in interval $[0,T]$)
% $W_{0,T}$: Controllability Grammian
% intt() : function to compute integration numerically

%---

while(1)
 clear
 clc
 disp('Nonlinear System $x'' + A^{-2} x = Bu + f(t,x)$ where A and B
 are given as follows:
 $A = input('Enter the matrix A');
 B = input('Enter the column vector B');
 m = input('Enter the value of m');

113
n = input('Enter the order of the matrix');
d = det(A);
pause

% Computation of Controllability Matrix:
disp('The controllability Matrix of the system is:')
C = B;
Q = B;
AS = A^-2;
for i=1:n-1
 C = (AS^i)*B
 Q = [Q C]
end
pause

% The Rank of the Controllability Matrix :
disp('The rank of the controllability matrix is:')
r = rank(Q)

if(r == n) % Checking necessary condition

% Input initial and final state
disp('The initial state is:')
x0 = input('Enter the initial state column vector');
y0 = input('Enter the initial velocity column vector');
pause
disp('The final state is:')
x1 = input('Enter the final state column vector');
pause
disp('We want to to reach the final state in time')

T = input('Enter the time to reach the final state');
pause
% The Controllability Grammian :
W_0_T = intt('inv(A)*cosnew(A*(t-s),n,m)*B*transpose(B)*
transpose(inv(A)*funm(A*(t-s),@sin))\',A,B,n,T,0,0);
x = x0;
for t = 0:0.01:T-0.01
x=[x x0];
end
xold = zeros(size(x));
k1=0;
while norm (x - xold) >= 0.001
xold = x;
% Nonlinear Function
f =[sin(xold(i,:))/90;cos(xold(2,:))/89;xold(3,:)/88];
k1 = k1+1;
i=0;
% The Solution and the steering Control of MSON :
for t = 0:0.01:T
i = i+1;
ss =
intt('inv(A)*funm(A*(1-s),@sin)*x(:,k)',A,B,n,T,f,0);
u(:,i) = B*(inv(A)*funm(A*(T-t),@sin))*inv(W_0_T)*
(x1 - funm(A*T,@cos)*x0 - inv(A)*funm(A*T,@sin)*y0-ss);
end
i=0;
for t=0:0.01:T
\begin{verbatim}
i=1+i;

aal = intt('inv(A)*funm(A*(t-s),@sin)*B*u(:,k)',A,B,n,t,0,u);

aa2 = intt('inv(A)*funm(A*(t-s),@sin)*x(:,k)',A,B,n,t,f,0);

x(:,i) = funm(A*t,@cos)*x0 + inv(A)*funm(A*t,@sin)*y0 +

aal + aa2;

end

x

end

kl

\end{verbatim}

% Plotting the graph of the solution and the steering control

t = 0:0.01:T

for k=1:n
 plot(t,x(k,:),'k')
 hold on
end

hold off

grid on

xlabel('TIME t')

ylabel('STATE x(t)')

title('CONTROLLED TRAJECTORIES OF "MSON" SYSTEM')

figure

grid on

plot(t,u)

xlabel('TIME t')

ylabel('STEERING CONTROL u(t)')

title('THE GRAPH OF THE STEERING CONTROL')
else
ans= input ('The system is not controllable. Would you like
to try other system (y/n)?')
if(ans == 'y')
 continue;
else
 break;
end
end
Matlab Code for the Computation of Controlled Trajectories and Steering Control of Linear System Using Spectral Method

% System Considered: \(\dot{x} + A x = Bu \)
% \(A \): Constant Matrix of order \(n \times n \)
% \(B \): Constant Vector of size \(n \)
% \(n \): order of \(A \)
% \(x_0 \): Initial State - column vector of size \(n \)
% \(y_0 \): Initial Velocity - column vector of size \(n \)
% \(x_1 \): Final State - column vector of size \(n \)
% \(T \): Final time (system should reach \(x_1 \) from \(x_0 \) in interval \([0, T]\))
% \(W \): Controllability Grammian
% \(\text{intt()} \): function to compute integration numerically

clear
clc

% Initialization
A = [1 2 1; 3 1 0; i 1; 0];
B = [1; 1; 0]
n = size(B);

% Computation of Controllability Matrix:
mat = [B A*B (A^2)*B]

% The Rank of the Controllability Matrix:
rank(mat)
% Initial and final states:
\[x_0 = [-1 \ 1 \ 0]' \]
\[x_1 = [1 -1 2]' \]
\[T = 4 \]

% The Controllability Gramian:
\[W = \text{intt('expm(A*(t-s))*B*transpose(B)*transpose(expm(A*(t-s)))', A,B,n(1),T,0,0)} \]

% The Eigen values and Eigen Vectors of Controllability Grammian:
\[[v L] = \text{eig}(W) \]
\[c = \text{inv}(v) * (x_1 - \text{expm}(A*T)*x_0) \]
\[\text{sum} = \text{zeros(size(B))} \]

for \(i = 1:n(1) \)
\[\text{sum} = \text{sum} + (c(i)*v(:,i))/L(i,i) \]
end

\(i = 0 \)

% The Solution and the steering Control of the system:

for \(t = 0:0.01:T \)
\[i = i+1; \]
\[j = 0; \]

for \(s = 0:0.01:t \)
\[j = j+1; \]
\[u(:,j) = B*\text{expm}(A*(T-s))'*\text{sum}; \]
end

\[\text{aa} = \text{intt('expm(A*(t-s))*B*u(:,k)',A,B,n(1),t,0,u)}; \]
\[x(:,i) = \text{expm}(A*t)*x_0 + \text{aa}; \]
end

% Plotting the graph of the solution:
t = 0:0.01:T
plot(t,x(1,:),'r')
hold on
plot(t,x(2,:),'b')
hold on
plot(t,x(3,:),'g')
xlabel('TIME t')
ylabel('STATE x(t)')
title('CONTROLLED TRAJECTORIES OF THE LINEAR SYSTEM')
grid on
Matlab Code for the Computation of Controlled Trajectories and Steering Control of Nonlinear System Using Spectral Method

%---
% System Considered : \(x' + A x = Bu + f(t, x) \)
% A : Constant Matrix of order \(n \times n \)
% B : Constant Vector of size \(n \)
% n : order of A
% x0 : Initial State - column vector of size \(n \)
% y0 : Initial Velocity - column vector of size \(n \)
% x1 : Final State - column vector of size \(n \)
% T : Final time (system should reach \(x_1 \) from \(x_0 \) in interval \([0,T]\))
% \(W \) : Controllability Grammian
% intt() : function to compute integration numerically

%---
clear
clc

% Initialization
A = [1 2 1;3 1 0;1 1 0];
B = [1;1;0];
n = size(B);
% Computation of Controllability Matrix:
mat = [B A*B (A^2)*B];
% The Rank of the Controllability Matrix :
rank(mat)
% Initial and final states:
x0 = [-1 1 0]';
x1 = [0 -1 1]';
T = 1;
% The Controllability Grammian:
W = intt('expm(A*(t-s))*B*transpose(B)*transpose(expm(A*(t-s)))',
 A,B,n(1),T,0,0);
% The Eigen values and Eigen Vectors of Controllability Grammian:
[v L] = eig(W);
x = x0;
for t=0:0.01:T-0.01
 x=[x x0];
end
xold = zeros(size(x));
k1=0;
while norm(x - xold) >= 0.001
 xold = x;
 % The nonlinear function:
 f = [sin(xold(1,:))/90;cos(xold(2,:))/89;xold(3,:)/88];
 k1 = k1+1;
 i=0;
end
% The Solution and the steering Control of the system:
for t = 0:0.01:T
 i = i+1;
 ss = intt('expm(A*s)*x(:,k)',A,B,n(1),T,f,0);
 c = inv(v)*(x1 - expm(A*T)*x0 - ss);
 sum = zeros(size(B));
for i = 1:n(l)
 sum = sum + (c(i)*v(:,i))/L(i,i);
end
j = 0;
for s = 0:0.01:t
 j = j+1;
 u(:,j) = B'*expm(A*(T-s))'*sum;
end
end
i=0;
for t=0:0.01:T
 i=i+1;
 aa1 = intt('expm(A*(t-s))*B*u(:,k)',A,B,n(l),t,0,u);
 aa2 = intt('expm(A*(t-s))*x(:,k)',A,B,n(l),t,f,0);
 x(:,i) = expm(A*t)*x0 + aa1 + aa2;
end
x
end

% Plotting the graph of the solution:
t = 0:0.01:T
plot(t,x(1,:),r')
hold on
plot(t,x(2,:),b')
hold on
plot(t,x(3,:),g')
xlabel('TIME t')
ylabel('STATE x(t)')
title('CONTROLLED TRAJECTORIES OF THE NONLINEAR SYSTEM')
grid on
hold off