CONTENTS

Acknowledgement

Abstract

List Of Table

List Of Figure

Chapter 1 Surface Engineering

1.1 Introduction
1.2 Advantages of Surface Engineering
1.3 Classification Of Surface Engineering
1.4 Methods of depositing ceramic coatings
1.5 Widely used Thin Films(TiN, ZrN and ZrTiN Thin Films)

Chapter 2 Thin Film Technology

2.1 Introduction
2.2 Deposition of thin films
2.3 Cathode Arc Evaporation Technique
2.4 Growth Model in Thin Films
2.5 Variables in CAE Technique
2.6 Composition of Ceramic Thin Film
2.7 Classification Of Thin Film
2.8 Tools for Thin film Characterisation
2.9 Corrosion Resistance of Thin Films
2.10 Wear Resistance of Thin Films

Chapter 3 Corrosion and Wear Mechanism

3.A. Corrosion and its Control
3.A.1 Definition of Corrosion
3.A.2 Electro Chemistry of Corrosion
3.A.3 Corrosion reactions
3.A.4 Corrosion Tests

Pg. No.

1

ii-ix

1-11

12-44

45-74

45-60
Chapter 4.

3.A.6 Common types of corrosion encountered in Ceramic thin films
3.A.7 Corrosion Tests

3. B.1 Fundamental of Friction and Wear
3.B.2 Classification of Friction and Wear Mechanism
3.B.3 Friction Transitions during Sliding
3.B.4 Classification of particles in wear debris
3.B.5 Wear Testing

Chapter 4. Experimental Technique 75-82
4.1 Thin Film Deposition
4.2 Scanning Electron Microscopy(SEM) & EDX Analysis
4.3 X ray Diffraction Analysis
4.4 Corrosion Testing
4.5 Wear Testing

Chapter 5 Results & Discussion 83-230
5.A SEM Observations 84-92
5.A.1 SEM & EDX analysis of as deposited TiN, ZrN and ZrTiN thin films
5.A.2 SEM of TiN thin Films of Varying thickness
5.A.3 SEM of ZrN thin Films of Varying thickness
5.A.4 SEM of ZrTiN thin Films of Varying thickness

5.B XRD Characterisation 93-110
5.B.1 XRD characterisation of Ti-N thin films
5.B.2 XRD characterisation of ZrN thin films
5.B.3 XRD characterisation of ZrTiN thin films

5.C Corrosion Behaviour Thin Films in various Environment 111-171
5.C1 (a) Corrosion Behaviour of Ti-N in 1N H2SO4
5.C1 (b) Corrosion Behaviour of Ti-N in 3.5%NaCl
5.C1 (c) Corrosion Behaviour of Ti-N in 0.1N HCl
5.C1 (d) Corrosion Behaviour of Ti-N in 11pH Na2SO4
5.C.1 P Potentiodynamic behaviour of Ti-N thin film in
various environment
5.C.1.B Electrochemical impedance behavior of Ti-N thin films in various environment

5.C.2 (a) Corrosion Behaviour of ZrN in 1N H$_2$SO$_4$
5.C.2 (b) Corrosion Behaviour of ZrN in 3.5% NaCl
5.C.2 (c) Corrosion Behaviour of ZrN in 0.1N HCl
5.C.2 (d) Corrosion Behaviour of ZrN in 11pH Na$_2$SO$_4$
5.C.2 P Potentiodynamic behaviour of ZrN thin film in various environment
5.C.2.B Electrochemical impedance behavior of ZrN thin films in various environment

5.C.3 (a) Corrosion Behaviour of ZrTiN in 1N H$_2$SO$_4$
5.C.3 (b) Corrosion Behaviour of ZrTiN in 3.5% NaCl
5.C.3 (c) Corrosion Behaviour of ZrTiN in 0.1N HCl
5.C.3 (d) Corrosion Behaviour of ZrTiN in 11pH Na$_2$SO$_4$
5.C.3 P Potentiodynamic behaviour of ZrTiN thin film in various environment
5.C.3.B Electrochemical impedance behavior of ZrTiN thin films in various environment

5.D Wear Characterisation
5.D.1 (a) Wear Behaviour of 1.5μm Ti-N Thin Films
5.D.1 (b) Wear Behaviour of 2.0μm Ti-N Thin Films
5.D.1 (c) Wear Behaviour of 2.5μm Ti-N Thin Films
5.D.1 (d) Wear Behaviour of 3.0μm Ti-N Thin Films
5.D.1 (e) Wear Behaviour of 4.0μm Ti-N Thin Films
5.D.1 Comparision of COF for all thickness of Ti-N Thin films

5.D.2 (a) Wear Behaviour of 1.5μm ZrN Thin Films
5.D.2 (b) Wear Behaviour of 2.0μm ZrN Thin Films
5.D.2 (c) Wear Behaviour of 2.5μm ZrN Thin Films
5.D.2 (d) Wear Behaviour of 3.0μm ZrN Thin Films
5.D.2 (e) Wear Behaviour of 4.0μm ZrN Thin Films
5.D.2 Comparision of COF for all thickness of ZrN Thin films
5.D.2.1 Composition of Wear Debris in Ti-N and ZrN Thin Films

5.D.3 (a) Wear Behaviour of 1.5μm ZrTiN Thin Films
5.D.3 (b) Wear Behaviour of 2.0μm ZrTiN Thin Films
5.D.3 (c) Wear Behaviour of 2.5μm ZrTiN Thin Films
5.D.3 (d) Wear Behaviour of 3.0μm ZrTiN Thin Films
5. D. 3 Comparision of COF for all thickness of ZrTiN Thin Films

Chapter 6

Conclusions 231

Scope of Further work 245

Summary 246

Paper published and presented 251