LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 a to i</td>
<td>Recordings showing changes occurring in hemodynamic and ECG parameters in acetyl carnitine treatment study</td>
<td>80-82</td>
</tr>
<tr>
<td>1.2 a to f</td>
<td>Hemodynamic changes with respect to time of induction of ischemia and reperfusion in acetyl carnitine treatment study</td>
<td>83-86</td>
</tr>
<tr>
<td>1.3 a to d</td>
<td>Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in acetyl carnitine treatment study</td>
<td>87-90</td>
</tr>
<tr>
<td>1.4</td>
<td>Images showing Area at risk and infarct size in acetyl carnitine treatment study</td>
<td>91</td>
</tr>
<tr>
<td>1.5</td>
<td>Histograms showing Area at risk and Infarct Size of various groups in acetyl carnitine treatment study</td>
<td>92</td>
</tr>
<tr>
<td>1.6</td>
<td>Photomicrographs of transverse sections of rat hearts stained with HE stain in acetyl carnitine treatment study</td>
<td>96</td>
</tr>
<tr>
<td>2.1 a to i</td>
<td>Recordings showing changes occurring in hemodynamic and ECG parameters in chronic curcumin treatment study</td>
<td>99-101</td>
</tr>
<tr>
<td>2.2 a to f</td>
<td>Hemodynamic changes with respect to time of induction of ischemia and reperfusion in chronic curcumin treatment study</td>
<td>102-105</td>
</tr>
<tr>
<td>2.3 a to d</td>
<td>Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in chronic curcumin treatment study</td>
<td>106-108</td>
</tr>
<tr>
<td>2.4</td>
<td>Images showing Area at risk and infarct size in chronic curcumin treatment study</td>
<td>110</td>
</tr>
<tr>
<td>2.5</td>
<td>Histograms showing Area at risk and Infarct Size of various groups in chronic curcumin treatment study</td>
<td>111</td>
</tr>
<tr>
<td>2.6</td>
<td>Photomicrographs of transverse sections of rat hearts stained with HE stain in chronic curcumin treatment study</td>
<td>114</td>
</tr>
<tr>
<td>3.1 a to i</td>
<td>Recordings showing changes occurring in hemodynamic and ECG parameters in acute curcumin treatment study</td>
<td>117-119</td>
</tr>
<tr>
<td>3.2 a to f</td>
<td>Hemodynamic changes with respect to time of induction of ischemia and reperfusion in acute curcumin treatment study</td>
<td>120-123</td>
</tr>
<tr>
<td>3.3 a to d</td>
<td>Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in acute curcumin treatment study</td>
<td>124-126</td>
</tr>
<tr>
<td>3.4</td>
<td>Images showing Area at risk and infarct size in acute curcumin treatment study</td>
<td>128</td>
</tr>
<tr>
<td>3.5</td>
<td>Histograms showing Area at risk and Infarct Size of various groups in acute curcumin treatment study</td>
<td>129</td>
</tr>
<tr>
<td>3.6</td>
<td>Photomicrographs of transverse sections of rat hearts stained with HE stain in acute curcumin treatment study</td>
<td>133</td>
</tr>
</tbody>
</table>
with HE stain in acute curcumin treatment study

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 a to i</td>
<td>Recordings showing changes occurring in hemodynamic and ECG parameters in Sildenafil treatment study</td>
<td>136-139</td>
</tr>
<tr>
<td>4.2 a to f</td>
<td>Hemodynamic changes with respect to time of induction of ischemia and reperfusion in Sildenafil treatment study</td>
<td>140-143</td>
</tr>
<tr>
<td>4.3 a to d</td>
<td>Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in Sildenafil treatment study</td>
<td>144-146</td>
</tr>
<tr>
<td>4.4</td>
<td>Images showing Area at risk and infarct size in Sildenafil treatment study</td>
<td>148</td>
</tr>
<tr>
<td>4.5</td>
<td>Histograms showing Area at risk and Infarct Size of various groups in Sildenafil treatment study</td>
<td>149</td>
</tr>
<tr>
<td>4.6</td>
<td>Photomicrographs of transverse sections of rat hearts stained with HE stain in Sildenafil treatment study</td>
<td>153</td>
</tr>
<tr>
<td>5.1 a to i</td>
<td>Recordings showing changes occurring in hemodynamic and ECG parameters in Lovastatin treatment study</td>
<td>156</td>
</tr>
<tr>
<td>5.2 a to f</td>
<td>Hemodynamic changes with respect to time of induction of ischemia and reperfusion in Lovastatin treatment study</td>
<td>158-161</td>
</tr>
<tr>
<td>5.3 a to d</td>
<td>Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in Lovastatin treatment study</td>
<td>162-164</td>
</tr>
<tr>
<td>5.4</td>
<td>Images showing Area at risk and infarct size in Lovastatin treatment study</td>
<td>166</td>
</tr>
<tr>
<td>5.5</td>
<td>Histograms showing Area at risk and Infarct Size of various groups in Lovastatin treatment study</td>
<td>167</td>
</tr>
<tr>
<td>5.6</td>
<td>Photomicrographs of transverse sections of rat hearts stained with HE stain in Lovastatin treatment study</td>
<td>170</td>
</tr>
<tr>
<td>6.1 a to i</td>
<td>Recordings showing changes occurring in hemodynamic and ECG parameters in Aminoguanidine treatment study</td>
<td>173-175</td>
</tr>
<tr>
<td>6.2 a to f</td>
<td>Hemodynamic changes with respect to time of induction of ischemia and reperfusion in Aminoguanidine treatment study</td>
<td>176-179</td>
</tr>
<tr>
<td>6.3 a to d</td>
<td>Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in Aminoguanidine treatment study</td>
<td>180-182</td>
</tr>
<tr>
<td>6.4</td>
<td>Images showing Area at risk and infarct size in Aminoguanidine treatment study</td>
<td>184</td>
</tr>
<tr>
<td>6.5</td>
<td>Histograms showing Area at risk and Infarct Size of various groups in Aminoguanidine treatment study</td>
<td>185</td>
</tr>
<tr>
<td>6.6</td>
<td>Photomicrographs of transverse sections of rat hearts stained with HE stain in Aminoguanidine treatment study</td>
<td>189</td>
</tr>
<tr>
<td>7.1 a to i</td>
<td>Recordings showing changes occurring in hemodynamic and ECG parameters in Progesterone treatment study</td>
<td>192-193</td>
</tr>
<tr>
<td>7.2 a to f</td>
<td>Hemodynamic changes with respect to time of induction of ischemia and reperfusion in Progesterone treatment study</td>
<td>194-197</td>
</tr>
</tbody>
</table>
ischemia and reperfusion in Progesterone treatment study
Electrocardiographic changes with respect to time of
induction of ischemia and reperfusion in Progesterone
treatment study

Images showing Area at risk and infarct size in Progesterone
treatment study

Histograms showing Area at risk and Infarct Size of various
groups in Progesterone treatment study

Photomicrographs of transverse sections of rat hearts stained
with HE stain in Progesterone treatment study

Recordings showing changes occurring in hemodynamic and
ECG parameters in Adenosine treatment study
Hemodynamic changes with respect to time of induction of
ischemia and reperfusion in Adenosine treatment study
Electrocardiographic changes with respect to time of
induction of ischemia and reperfusion in Adenosine
treatment study

Images showing Area at risk and infarct size in Adenosine
treatment study

Histograms showing Area at risk and Infarct Size of various
groups in Adenosine treatment study

Photomicrographs of transverse sections of rat hearts stained
with HE stain in Adenosine treatment study

Recordings showing changes occurring in hemodynamic and
ECG parameters in chronic curcumin and sildenafil
combination treatment study
Hemodynamic changes with respect to time of induction of
ischemia and reperfusion in chronic curcumin and sildenafil
combination treatment study
Electrocardiographic changes with respect to time of
induction of ischemia and reperfusion in chronic curcumin
and sildenafil combination treatment study

Images showing Area at risk and infarct size in chronic
curcumin and sildenafil combination treatment study
Histograms showing Area at risk and Infarct Size of various
groups in chronic curcumin and sildenafil combination
treatment study

Photomicrographs of transverse sections of rat hearts stained
with HE stain in chronic curcumin and sildenafil
combination treatment study

Recordings showing changes occurring in hemodynamic and
ECG parameters in acute curcumin and sildenafil
combination treatment study
Hemodynamic changes with respect to time of induction of
ischemia and reperfusion in acute curcumin and sildenafil combination treatment study

10.3 a to d Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in acute curcumin and sildenafil combination treatment study

10.4 Images showing Area at risk and infarct size in acute curcumin and sildenafil combination treatment study

10.5 Histograms showing Area at risk and Infarct Size of various groups in acute curcumin and sildenafil combination treatment study

10.6 Photomicrographs of transverse sections of rat hearts stained with HE stain in acute curcumin and sildenafil combination treatment study

11.1 a to i Recordings showing changes occurring in hemodynamic and ECG parameters in aminoguanidine and sildenafil combination treatment study

11.2 a to f Hemodynamic changes with respect to time of induction of ischemia and reperfusion in aminoguanidine and sildenafil combination treatment study

11.3 a to d Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in aminoguanidine and sildenafil combination treatment study

11.4 Images showing Area at risk and infarct size in aminoguanidine and sildenafil combination treatment study

11.5 Histograms showing Area at risk and Infarct Size of various groups in aminoguanidine and sildenafil combination treatment study

11.6 Photomicrographs of transverse sections of rat hearts stained with HE stain in aminoguanidine and sildenafil combination treatment study

12.1 a to i Recordings showing changes occurring in hemodynamic and ECG parameters in lovastatin and sildenafil combination treatment study

12.2 a to f Hemodynamic changes with respect to time of induction of ischemia and reperfusion in lovastatin and sildenafil combination treatment study

12.3 a to d Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in lovastatin and sildenafil combination treatment study

12.4 Images showing Area at risk and infarct size in lovastatin and sildenafil combination treatment study

12.5 Histograms showing Area at risk and Infarct Size of various groups in lovastatin and sildenafil combination treatment study

12.6 Photomicrographs of transverse sections of rat hearts stained
with HE stain inLovastatin and sildenafil combination treatment study

13.1 a to i Recordings showing changes occurring in hemodynamic and ECG parameters in Lycopene treatment study 296-298
13.2 a to f Hemodynamic changes with respect to time of induction of ischemia and reperfusion in Lycopene treatment study 299-302
13.3 a to d Electrocardiographic changes with respect to time of induction of ischemia and reperfusion in Lycopene treatment study 303-305
13.4 Images showing Area at risk and infarct size in Lycopene treatment study 307
13.5 Histograms showing Area at risk and Infarct Size of various groups in Lycopene treatment study 308
13.6 Photomicrographs of transverse sections of rat hearts stained with HE stain in Lycopene treatment study 311

2. ISOPROTERENOL MODEL STUDY 318-346
I.1 Photomicrographs of transverse sections of rat hearts stained with HE stain in acetyl carnitine treatment study 318
I.2 Photomicrographs of transverse sections of rat hearts stained with HE stain in chronic curcumin treatment study 3245
I.3 Photomicrographs of transverse sections of rat hearts stained with HE stain in acute curcumin treatment study 331
I.3 Photomicrographs of transverse sections of rat hearts stained with HE stain in Sildenafil treatment study 337
I.3 Photomicrographs of transverse sections of rat hearts stained with HE stain in Lovastatin treatment study 344

3. IN-VITRO ANTIOXIDANT ACTIVITY STUDY 347-362
4.3.1 a Effect of acetyl carnitine on DPPH radical formation 347
4.3.1 b Effect of acetyl carnitine on NBT-Riboflavin-light induced superoxide release 347
4.3.1 c Effect of acetyl carnitine on nitrite formation from released nitric oxide 347
4.3.1 d Effect of acetyl carnitine at concentrations on iron catalyzed lipid peroxidation 347
4.3.2 a Effect of Sildenafil on DPPH radical formation 350
4.3.2 b Effect of Sildenafil on NBT-Riboflavin-light induced superoxide release 350
4.3.2 c Effect of Sildenafil on nitrite formation from released nitric oxide 350
4.3.2 d Effect of Sildenafil at concentrations on iron catalyzed lipid peroxidation 350
l lipid peroxidation

4.3.3 a Effect of Lovastatin on DPPH radical formation
4.3.3 b Effect of Lovastatin on NBT-Riboflavin-light induced superoxide release
4.3.3 c Effect of Lovastatin on nitrite formation from released nitric oxide
4.3.3 d Effect of Lovastatin at concentrations on iron catalyzed lipid peroxidation

4.3.4 a Effect of Aminoguanidine on DPPH radical formation
4.3.4 b Effect of Aminoguanidine on NBT-Riboflavin-light induced superoxide release
4.3.4 c Effect of Aminoguanidine on nitrite formation from released nitric oxide
4.3.5 d Effect of Aminoguanidine at concentrations on iron catalyzed lipid peroxidation

4.3.5 a Effect of Progesterone on DPPH radical formation
4.3.5 b Effect of Progesterone on NBT-Riboflavin-light induced superoxide release
4.3.5 c Effect of Progesterone on nitrite formation from released nitric oxide
4.3.5 d Effect of Progesterone at concentrations on iron catalyzed lipid peroxidation

4.3.6 a Effect of Lycopene on DPPH radical formation
4.3.6 b Effect of Lycopene on NBT-Riboflavin-light induced superoxide release
4.3.6 c Effect of Lycopene on nitrite formation from released nitric oxide
4.3.6 d Effect of Lycopene at concentrations on iron catalyzed lipid peroxidation