INDEX

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abstract</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>Acknowledgement</td>
<td>IV</td>
</tr>
<tr>
<td>3</td>
<td>Contents</td>
<td>VI</td>
</tr>
<tr>
<td>4</td>
<td>List of Figures</td>
<td>XIV</td>
</tr>
<tr>
<td>5</td>
<td>List of Tables</td>
<td>XXIV</td>
</tr>
<tr>
<td>6</td>
<td>Publications</td>
<td>XXVI</td>
</tr>
<tr>
<td>7</td>
<td>Bio-Data</td>
<td>XXVIII</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
</table>

CHAPTER 1 INTRODUCTION

1.1 PREAMBLE 1
1.2 RESEARCH AIM 2
1.3 BASIC PROBLEM 3
1.4 BASIC CONSIDERATION 3
1.5 OBJECTIVES 4

CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION 5
2.2 MARKET FOR TEXTILE COMPOSITES 5
2.3 TEXTILE FLEXIBLE COMPOSITE 11
 2.3.1 Manufacturing of Thermoplastic Composite 11
2.4 TEXTILE PREFORMS 13
 2.4.1 Classification of Performs 14
 a) Woven Preforms

VI
b) Knitted and Braided Preforms
c) Nonwoven Preforms
d) Three-dimensional Preforms
e) Preforms from Commingled yarn

2.4.2 Characteristics of Textile Preforms 17

2.5 DIFFERENT HYBRID YARN STRUCTURES 18
2.5.1 New Hybrid Yarns for Continuous Fibre Reinforced Thermoplastic 20

2.6 COMMINGLING PROCESS 22
2.6.1 Basic Principle of Commingling Process 22
2.6.2 Basic Airflow Analysis 23
2.6.3 Commingled Yarn Structures 25

2.7 FACTORS AFFECTING COMMINGLING PROCESS 26
2.7.1 Effect of Raw Material Parameters 27
2.7.2 Process Variables 28
 a) Air pressure
 b) Overfeed
 c) Take up speed
 d) Yarn tension
2.7.3 Design of Nozzle 30
 a) Effect of Nozzle Design
 b) Influence of jet design on blend homogeneity

2.8 DEVELOPMENT IN AIR TEXTURING/COMMINGLING MACHINES 35
2.8.1 Air Texturing Machine 36
2.8.2 Commingling Machine 38
2.8.3 Development on Nozzle Technology 39
 a) Air-texturing nozzles
 b) Commingling/interlacing nozzles
2.8.4 Covering Machine 41

2.9 QUALITY EVALUATION OF COMMINGLED YARN 43
2.9.1 Nip Frequency and Nip Regularity
 a) Visual counting
 d) Needle insertion
 c) Thickness measurement
 d) Optical scanning
 e) RICa Interlace counter

2.9.2 Nip Stability

2.9.3 Blend Homogeneity
 a) SEM Analysis
 b) Image analysis

2.10 APPLICATIONS OF HYBRID YARN

2.10.1 Conductive Textiles

2.10.2 Methods of Imparting Electrical Properties at Fibre Stage
 a) Draw blending of Metal and Textile Silvers
 b) Treatment with Metallic Salts
 c) Galvanic Coating
 d) Coating fibres with conductive particles Suspended in a resin
 e) Vacuum Spraying

2.10.3 Methods of Imparting Electrical Properties At Yarn Stage
 a) Ring spinning
 b) Open and spinning
 c) Friction spinning
 d) Wrapping spinning (Cover spinning)
 e) Production of yarn from Bi-component fibres
 f) Speciality yarns

2.10.4 Imparting Electrical Properties at Fabric Stage

2.11 ELECTRICAL PROPERTIES OF CONDUCTIVE MATERIAL

2.11.1 Dielectric Strength and its measurement
2.11.2 Surface Resistivity and Its Measurement 63
2.11.3 Volume Resistivity and Its Measurement 65
2.12 MANUFACTURE OF THERMOPLASTIC COMPOSITES 65
 2.12.1 Sheet Forming of Thermoplastic Composites 65
 2.12.2 Tape-Laying of Thermoplastic Composites 66
 2.12.3 Liquid Moulding 67

CHAPTER 3 HOLLOW SPINDLE WRAPPING PROCESS 70-90

3.1 INTRODUCTION 70
3.2 OBJECTIVE 70
3.3 EXPERIMENTAL PROCEDURE 71
 3.3.1 Principle of Hollow Spindle Wrapping Technique 71
 3.3.2 Fabrication of Hollow Spindle Wrapping Machine 72
 3.3.3 Wrap Level of Yarn (Twist level) of Hybrid Yarn 74
 3.3.4 Preparation of Hybrid Yarns 77
 3.3.5 Measurement of Hybrid Yarns Properties 79
 a) Linear Density
 b) Yarn Tenacity
3.4 RESULTS AND DISCUSSION 80
 3.4.1 Effect of Core Yarn Properties on Hybrid Yarn Properties 80
 3.4.2 Effect of Wrapped Yarn Properties on Hybrid Yarn Properties 84
 3.4.3 Effect of Different Core Yarn Material on Hybrid Yarn Properties 86
 3.4.4 Effect of Twist Level on Hybrid Yarn Properties 88
 3.4.5 Analysis of Hybrid Yarn Structure by Scanning Electron Micrograph 89
3.5 CONCLUSIONS 90
CHAPTER 4 CONDUCTIVE HYBRID YARN

4.1 INTRODUCTION

4.2 OBJECTIVE

4.3 EXPERIMENTAL PROCEDURE

4.3.1 Preparation of Conductive Hybrid Yarn

4.3.2 Preparation of Hybrid Yarn Conductive Fabric

4.3.3 Preparation of Laminate

4.3.4 Testing Conductive Yarn, Performs and Laminates

Properties

a) Yarn Testing

b) Preforms Fabric

c) Laminate (Composite sheet)

4.3.5 Scanning Electron Micrograph

4.4 RESULTS AND DISCUSSION

4.4.1 Conductive hybrid yarn properties

a) Linear Density

b) Strength and extension properties of conductive hybrid yarn

c) Proportion of mass of parent yarn

4.4.2 Conductive hybrid yarn fabric properties

a) Fabric Thickness

b) Courses/inch and Wales/inch

4.4.3 Laminate

a) Tensile strength and Flexural rigidity (N/mm²)

b) Dielectric Strength (KV/mm)

c) Resistivity (Ohm)

4.5 SEM OF CONDUCTIVE HYBRID YARNS AND LAMINATES

4.6 CONCLUSIONS
CHAPTER 5 COMMINGLING PROCESS

5.1 INTRODUCTION 117

5.2 MATERIALS AND METHODOLOGY 118

5.2.1 Raw Material 118

5.2.2 Fabrication of Equipment 119
 a) Guide
 b) Nozzle
 c) Winding Device

5.2.3 Yarn Passage Through Machine 123

5.2.4 Sample Preparation 123

5.2.5 Testing of Commingled Yarn 127
 a) Tensile strength measurement
 b) Commingling characteristic
 c) SEM (Scanning Electron Micrograph)

5.3 RESULTS AND DISCUSSION 129

5.3.1 Effect of Processing Parameters on Tensile Properties 129
 a) Tenacity
 b) Modulus

5.3.2 Effect of Processing Parameters on Mingling Characteristics of Hybrid Yarn 134
 a) Nip frequency
 b) Nip stability
 c) Nip regularity

5.3.3 Effect of Different Yarn Passage and Processing Parameter on Blending Homogeneity of Hybrid Yarn 140

5.4 CONCLUSIONS 142

5.5 FABRICATION OF COMMINGLING MACHINE 143

XI
CHAPTER 6 COMMINGLING PARAMETERS 159-178

6.1 INTRODUCTION 159
6.2 EXPERIMENTAL 159
 6.2.1 Raw Material 159
 6.2.2 Preparation of Yarn Sample 160
 6.2.3 Nozzle Specifications 162
 6.2.4 Test Method of Coming Hybrid Yarn 163

6.3 RESULTS AND DISCUSSION 163
 6.3.1 EFFECT of nozzle type on properties of commingled yarn
 a) Linear density
 b) Tensile properties of hybrid yarn
 c) Commingling characteristics of hybrid yarn
 6.3.2 Effect of Different Types Of Nozzles on Homogeneity of Hybrid Yarn 173
 6.3.3 Effect of Proportion of Glass: Polypropylene on Characteristics of Commingled Hybrid Yarn 173
 6.3.4 Effect of Glass: Polypropylene Contest on Homogeneity of Hybrid Yarn 177

6.4 CONCLUSIONS 178

CHAPTER 7 RESPONSE SURFACE ANALYSIS 179-206

7.1 INTRODUCTION 179
7.2 RESPONSE SURFACE METHODOLOGY 180
 7.2.1 Box- Behnken Design 182
 7.2.2 Response Surface Application 182
7.3 MATERIALS AND METHODOLOGY 183
 7.3.1 Preparation of Yarn Sample 183
 7.3.2 Box-Behnken Design 183
 7.3.3 Measurement of Yarn Characteristics 184
7.4 RESULTS AND DISCUSSION

7.4.1 Effect Of Processing Parameters on Liner Density of Hybrid Yarn 187

7.4.2 Effect of Processing Parameters on Hybrid Yarn Tenacity 189

7.4.3 Effect of Processing Parameters on Extension of Hybrid Yarn 191

7.4.4 Effect of Processing Parameters on Hybrid Yarn Nip Frequency 193

7.4.5 Effect of Processing Parameters on Hybrid Yarn Nip Stability 195

7.4.6 Effect of Processing Parameters on Hybrid Yarn Nip regularity 197

7.5 STRUCTURE COMMINGLED HYBRID YARN 199

7.5.1 Cross section of Hybrid Yarn produced at Different Processing Condition 199

7.5.2 SEM of Hybrid Yarn Manufactured by Different Methods 202

7.6 CONCLUSION 205

CHAPTER 8 FURTHER SCOPE OF RESEARCH 206

8.1 SUGGESTIONS FOR FURTHER RESEARCH WORK 206

REFERENCES 207-214

APPENDIX 215-226

GLOSSARY 227-233