CONTENTS

LIST OF TABLES i - viii
LIST OF FIGURES ix - xv

CHAPTER 1 INTRODUCTION 1-9
1.1 Introduction 2
1.2 Proposed plan of work 7

CHAPTER 2 LITERATURE REVIEW 10-118
2.1 Peptide and DNA delivery 11
2.1.1 Introduction 11
2.1.2 Future research in drug delivery 12
2.2 Liposomes as delivery systems for peptides and DNA 13
2.2.1 Introduction 13
2.2.2 Structure and classification of liposomes 14
2.2.3 Materials used in the preparation of liposomes 14
2.2.3.1 Phospholipids 14
2.2.3.2 Sphingolipids 15
2.2.3.3 Cholesterol 15
2.2.3.4 Charged phospholipids 16
2.2.3.5 Other substances 16
2.2.4 Mechanism of liposome formulation 17
2.2.5 Preparation of liposomes 19
2.2.5.1 Mechanical dispersion methods 19
2.2.5.2 Solvent dispersion methods 21
2.2.5.3 Methods based on detergent removal by 23
2.2.5.4 Methods based on size transformation and fusion 23
2.2.6 Procedures for the removal of unencapsulated drug from the liposomal suspension 23
2.2.7 Characterization of liposomes 25
2.2.7.1 Physical characterization 25
2.2.7.2 Chemical characterization 28
2.2.8 Stability of liposomes 28
2.2.8.1 Physical stability 29
2.2.8.2 Chemical stability 29
2.2.8.3 Approaches to improve liposomal stability 30
2.2.9 Pharmacokinetics and fate of liposomes 31
2.2.10 Applications of liposomes 33
2.3 Sterically stabilized liposomes 36
2.3.1 Introduction 36
2.3.2 Agents used for steric stabilization 37
2.3.3 Properties of PEG-grafted liposomes 41
2.3.3.1 Physiochemical properties 41
2.3.4 The immune system 47
2.3.4.1 Innate immunity 47
2.3.4.2 Acquired immunity 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.5</td>
<td>Opsonization and Phagocytosis</td>
<td>51</td>
</tr>
<tr>
<td>2.3.5.1</td>
<td>Major specialized opsonins of normal blood include</td>
<td>52</td>
</tr>
<tr>
<td>2.3.5.2</td>
<td>Minor opsonins</td>
<td>53</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Avoidance of MPS uptake and its consequences</td>
<td>54</td>
</tr>
<tr>
<td>2.3.7</td>
<td>The surface of long circulating liposomes</td>
<td>55</td>
</tr>
<tr>
<td>2.3.7.1</td>
<td>Molecular brush: structure and protective properties</td>
<td>57</td>
</tr>
<tr>
<td>2.3.7.2</td>
<td>Interactions of protective polymers with components of biological systems</td>
<td>58</td>
</tr>
<tr>
<td>2.3.7.3</td>
<td>Approaches to the development of better liposome surface modifiers</td>
<td>60</td>
</tr>
</tbody>
</table>

References

2.4 Profile of cyclosporine (CsA)
2.4.1 Introduction 74
2.4.2 Chemistry 74
2.4.2.1 Structural formula 74
2.4.2.2 Structure 74
2.4.3 Pharmacology 74
2.4.3.1 Mechanism of action 74
2.4.3.2 Drug disposition and pharmacokinetics 75
2.4.3.3 Cellular mechanism of action of cyclosporine 76
2.4.3.4 Therapeutic uses 77
2.4.3.5 Dosage and administration 78
2.4.3.6 Toxicity 78
2.4.3.7 Drug interactions 79
2.4.3.8 Precautions 79
2.4.3.9 Laboratory tests 79
2.4.3.10 Adverse reactions 80
2.4.4 Quantitative analytical profile of cyclosporine 80
2.4.4.1 Chromatographic techniques 80
2.4.4.2 Other methods 82

References 85

2.5 Profile of Leuprolide acetate 89
2.5.1 Introduction 89
2.5.2 Description 89
2.5.2.1 Molecular formula 89
2.5.2.2 Molecular weight 89
2.5.3 Physiochemical properties 90
2.5.3.1 Solubility 90
2.5.3.2 Ionisation constant 90
2.5.4 Clinical pharmacology 90
2.5.4.1 LHRH in prostate cancer 91
2.5.4.2 LHRH in melanoma 93
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.4.3</td>
<td>Expression of LHRH and LHRH receptors</td>
<td>94</td>
</tr>
<tr>
<td>2.5.4.4</td>
<td>Antiproliferative activity of LHRH</td>
<td>95</td>
</tr>
<tr>
<td>2.5.4.5</td>
<td>Uses</td>
<td>95</td>
</tr>
<tr>
<td>2.5.4.6</td>
<td>Pharmacokinetics</td>
<td>96</td>
</tr>
<tr>
<td>2.5.4.7</td>
<td>Distribution</td>
<td>96</td>
</tr>
<tr>
<td>2.5.4.8</td>
<td>Metabolism</td>
<td>96</td>
</tr>
<tr>
<td>2.5.4.9</td>
<td>Excretion</td>
<td>96</td>
</tr>
<tr>
<td>2.5.4.10</td>
<td>Indications</td>
<td>96</td>
</tr>
<tr>
<td>2.5.4.11</td>
<td>Dosage and administration</td>
<td>97</td>
</tr>
<tr>
<td>2.5.4.12</td>
<td>Contraindications</td>
<td>98</td>
</tr>
<tr>
<td>2.5.4.13</td>
<td>Adverse effects</td>
<td>98</td>
</tr>
<tr>
<td>2.5.4.14</td>
<td>Overdosage</td>
<td>99</td>
</tr>
<tr>
<td>2.5.4.15</td>
<td>Pharmaceutical precautions</td>
<td>99</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Quantitative methods</td>
<td>99</td>
</tr>
<tr>
<td>2.5.5.1</td>
<td>HPLC</td>
<td>99</td>
</tr>
</tbody>
</table>

References

2.6 DNA

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.1</td>
<td>Introduction</td>
<td>107</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Calf thymus DNA</td>
<td>107</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Gene delivery</td>
<td>107</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Production of liposomes for gene delivery</td>
<td>109</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Liposomes for prolonged circulation</td>
<td>111</td>
</tr>
<tr>
<td>2.6.6</td>
<td>Quantitative methods</td>
<td>114</td>
</tr>
<tr>
<td>2.6.6.1</td>
<td>Ultraviolet (uv) spectrophotometry</td>
<td>114</td>
</tr>
<tr>
<td>2.6.6.2</td>
<td>Chemiluminescence method</td>
<td>114</td>
</tr>
<tr>
<td>2.6.6.3</td>
<td>Fluorescence method</td>
<td>115</td>
</tr>
</tbody>
</table>

References

CHAPTER 3 ANALYTICAL METHODS

3.1 Introduction

3.2 Experimental

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Drugs</td>
<td>120</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Reagents</td>
<td>120</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Apparatus</td>
<td>120</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Estimation of phosphatidyl choline in liposomes</td>
<td>120</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Solutions</td>
<td>121</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Principle</td>
<td>121</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Procedure for calibration curve</td>
<td>121</td>
</tr>
<tr>
<td>3.2.4.4</td>
<td>Stability and selectivity</td>
<td>123</td>
</tr>
<tr>
<td>3.2.4.5</td>
<td>Estimation of phosphatidyl choline from liposomes/ supernatant</td>
<td>124</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Estimation of cholesterol in liposomes</td>
<td>124</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Solutions</td>
<td>124</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Principle</td>
<td>125</td>
</tr>
<tr>
<td>3.2.5.3</td>
<td>Procedure for calibration curve</td>
<td>125</td>
</tr>
<tr>
<td>3.2.5.4</td>
<td>Stability and selectivity</td>
<td>125</td>
</tr>
</tbody>
</table>

References
3.2.5.5 Estimation of cholesterol from liposomes/ supernatant

3.2.6 Estimation of Cyclosporine in liposomes

3.2.6.1 Solutions

3.2.6.2 Procedure for calibration curve

3.2.6.3 Stability and selectivity

3.2.6.4 Estimation of cyclosporine from liposomes/ supernatant

3.2.7 Estimation of Leuprolide acetate in 0.1n sodium hydroxide

3.2.7.1 Solutions

3.2.7.2 Procedure for calibration curve

3.2.7.3 Stability and selectivity

3.2.7.4 Estimation of Leuprolide acetate from liposomes/ supernatant

3.2.8 Estimation of DNA in Tris buffer pH 8.0

3.2.8.1 Solutions

3.2.8.2 Procedure for calibration curve

3.2.8.3 Stability and selectivity

3.2.8.4 Estimation of DNA from liposomes/ supernatant

3.2.9 Estimation of Leuprolide acetate in phosphate buffer saline (PBS)

3.2.9.1 Solutions

3.2.9.2 Procedure for calibration curve

3.2.9.3 Stability and selectivity

3.2.10 Estimation of DNA in PBS

3.2.10.1 Solutions

3.2.10.2 Procedure for calibration curve

3.2.10.3 Stability and selectivity

3.2.11 Estimation of Polyethylene glycol derivatives in liposomes

3.2.11.1 Solutions

3.2.11.2 Procedure for calibration curve

3.2.11.3 Stability and selectivity

3.2.11.4 Estimation of polyethylene glycol derivatives from liposomes/ supernatant

3.3 Results and discussion

3.3.1 Estimation of phosphatidyl choline in liposomes

3.3.2 Estimation of cholesterol in liposomes

3.3.3 Estimation of cyclosporine in liposomes

3.3.4 Estimation of leuprolide acetate in liposomes

3.3.5 Estimation of DNA in liposomes

3.3.6 Estimation of leuprolide acetate in phosphate buffer saline, pH 7.4 (PBS)
Estimation of DNA in phosphate buffer saline, pH 7.4 (PBS)

Estimation of polyethylene glycol derivatives in liposomes

Estimation of methoxy polyethylene glycol 5000 activated with cyanuric chloride-phosphatidyl ethanolamine conjugate (MPEG5000-CC-PE)

Estimation of methoxy polyethylene glycol 2000 activated with cyanuric chloride-phosphatidyl ethanolamine conjugate (MPEG2000-CC-PE)

CHAPTER 4 PREPARATION OF LIPOSOMES

4.1 Introduction

4.2 Experimental

4.2.1 Drugs

4.2.2 Reagents

4.2.3 Equipment

4.2.4 Solutions

4.2.5 Preparation of neutral and charged liposomes containing cyclosporine

4.2.6 Leuprolide acetate and DNA liposomes

4.2.6.1 Preparation of conventional liposomes containing leuprolide acetate

4.2.6.2 Preparation of conventional liposomes containing DNA

4.2.7 Electrolyte induced flocculation test

4.2.8 Preparation of sterically stabilized liposomes containing leuprolide acetate and DNA

4.2.8.1 Introduction

4.2.8.2 Synthesis of methoxy polyethylene glycol 5000 activated with cyanuric chloride (MPEG5000-CC)

4.2.8.3 Synthesis of methoxy polyethylene glycol 5000 activated with cyanuric chloride-phosphatidyl ethanolamine conjugate (MPEG5000-CC-PE)

4.2.8.4 Synthesis of methoxy polyethylene glycol 2000 activated with cyanuric chloride (MPEG2000-CC)

4.2.8.5 Synthesis of methoxy polyethylene glycol 2000 activated with cyanuric chloride-phosphatidyl ethanolamine conjugate (MPEG2000-CC-PE)
4.2.8.6 Preparation of liposomes using MPEG5000-CC-PE and MPEG2000-CC-PE

4.3 Results and discussion

4.3.1 Optimisation of the preparation of charged liposomes of cyclosporine

4.3.1.1 Influence of formulation process parameters

4.3.1.2 Conditions for preparation of cyclosporine containing liposomes.

4.3.1.3 Influence of formulation component variables

4.3.2 Optimization of the preparation of leuprolide acetate liposomes

4.3.2.1 Multiple linear regression

4.3.2.2 Contour plots

4.3.2.3 ANN structure

4.3.2.4 Comparison of ANN and MLR

4.3.3 Optimization of the preparation of conventional liposomes of DNA

4.3.3.1 Conditions for preparation of DNA containing liposomes

4.3.4 Sterically stabilized liposomes of leuprolide acetate and DNA using PEG derivatives

References

CHAPTER 5 CHARACTERIZATION OF LIPOSOMES

5.1 Introduction

5.2 Experimental

5.2.1 Reagents

5.2.2 Apparatus

5.2.3 Solutions

5.2.4 Characterization

5.2.4.1 Morphology and lamellarity

5.2.4.2 Size

5.2.4.3 Scanning electron microscopy (SEM)

5.2.4.4 Differential scanning calorimetry (DSC)

5.2.4.5 Entrapped volume

5.2.4.6 Zeta potential

5.2.4.7 Electrolyte induced flocculation test

5.2.4.8 Drug entrapment

5.3 Results and discussion

5.3.1 Morphology and lamellarity

5.3.2 Particle size

5.3.3 Differential scanning calorimetry (DSC)

5.3.4 Zeta potential
CHAPTER 6 IN VITRO DRUG RELEASE KINETICS FROM LIPOSOMES

6.1 Introduction
6.2 Experimental
 6.2.1 Reagents
 6.2.2 Solutions
 6.2.3 Studies of kinetics of drug release from liposomes
 6.2.4 Data analysis
6.3 Results and discussion
 6.3.1 Release studies of charged liposomes containing cyclosporine
 6.3.2 Release studies of conventional liposomes containing leuprolide acetate and DNA
 6.3.3 Release studies of sterically stabilized liposomes containing leuprolide acetate and DNA
 6.3.4 Conclusions

References

CHAPTER 7 STABILITY TESTING OF LIPOSOMES

7.1 Introduction
7.2 Experimental
 7.2.1 Reagents
 7.2.2 Apparatus
 7.2.3 Solutions
 7.2.4 Stability studies of Cyclosporine (CsA) loaded liposomal formulations
 7.2.5 Stability studies of conventional and sterically stabilized liposomes containing leuprolide acetate
 7.2.6 Stability studies of conventional and sterically stabilized liposomes containing DNA
7.3 Results and discussion
 7.3.1 Cyclosporine loaded liposomes
 7.3.2 Leuprolide acetate loaded liposomes
 7.3.3 DNA loaded liposomes
7.4 Conclusions

References

CHAPTER 8 IN VITRO IMMUNOSUPPRESSIVE STUDY OF CYCLOSPORINE LIPOSOMES

8.1 Introduction
8.2 Experimental
 8.2.1 Chemicals
8.2.2 Preparation of splenic lymphocytes (splenocyte) suspension

8.2.3 Treatment of splenocytes with CsA and liposomal CsA

8.2.4 DNA analysis by flow cytometry

8.2.5 Analysis of CD4 and CD8 cells

8.2.6 Statistical analysis

8.3 Results and discussion

8.3.1 Studies on apoptosis by flow cytometry

8.3.2 Effects on CD4 and CD8 cells

8.3.3 Conclusion

References

CHAPTER 9 IN VITRO CYTOTOXICITY STUDY OF LEUPROLIDE ACETATE LIPOSOMES

9.1 Introduction

9.2 Measurement endpoints for cytotoxicity

9.3 Cytotoxicity protocols

9.4 Principle of the MTT assay

9.4.1 Advantages of MTT method

9.5 Experimental

9.5.1 Cell lines

9.5.2 Solutions

9.5.2.1 MTT solution

9.5.2.2 Solution of leuprolide acetate and its liposomal formulations

9.6 Results and discussion

9.6.1 Leuprolide acetate and its liposomes

References

CHAPTER 10 RADIOLABELING OF LIPOSOMES

10.1 Introduction

10.2 Chemistry of technetium

10.3 Reduction of 99mTcO$_4^-$

10.4 Labeling with reduced technetium

10.5 Hydrolysis of reduced technetium and tin

10.6 Materials

10.7 Radiolabeling of Cyclosporine, leuprolide acetate, DNA and their liposomal formulations

10.7.1 Labeling efficiency

10.7.2 Stability study of 99mTc- labeled complex

10.7.3 DTPA challenging test

10.7.4 Optimization of radiolabeling of Cyclosporine and its liposomal formulations

10.7.5 Optimization of radiolabeling of Leuprolide and its liposomal formulations
10.8 Results and discussion

10.8.1 Radiolabeling of Cyclosporine and its liposomes

10.8.1.1 pH of the complex
10.8.1.2 Incubation time
10.8.1.3 SnCl₂·2H₂O concentration
10.8.1.4 Stability of the labeled complex

10.8.2 Radiolabeling of Leuprolide and its liposomes

10.8.2.1 pH of the complex
10.8.2.2 Incubation time
10.8.2.3 SnCl₂·2H₂O concentration
10.8.2.4 Stability of the labeled complex

10.8.3 Radiolabeling of DNA and its liposomes

10.8.3.1 pH of the complex
10.8.3.2 Incubation time
10.8.3.3 SnCl₂·2H₂O concentration
10.8.3.4 Stability of the labeled complex

References

CHAPTER 11 IN VIVO STUDIES

11.1 Introduction 363
11.2 Experimental

11.2.1 Selection of animals 363
11.2.2 Tumor implantation 363
11.2.3 Blood kinetic studies 364
11.2.4 Biodistribution studies 364
11.2.5 Gamma scintigraphic imaging 364
11.2.6 Data Analysis 365
11.2.7 In vitro testing for drug retention in liposomes 365

11.3 Results and discussion 402

11.3.1 General methodology 402
11.3.2 Cyclosporine and its liposomes 403
11.3.3 Leuprolide acetate and its liposomes 406
11.3.4 DNA and its liposomes 408

References 412

CHAPTER 12 NEPHROTOXICITY STUDY OF CYCLOSPORINE LIPOSOMES

12.1 Introduction 415
12.2 Four drug-related renal syndromes

12.2.1 Acute renal failure 415
12.2.1.1 Prerenal acute renal failure 416
12.2.1.2 Three types of intrinsic acute renal failure 416

12.2.2 Nephrotic syndrome 418
12.2.3 Chronic renal insufficiency 418
12.3 Experimental procedure

12.3.1 Nephrotoxicity study of cyclosporine and its liposomal formulations

12.4 Results and discussion

12.4.1 Nephrotoxicity studies

References 423

CHAPTER 13 SUMMARY AND CONCLUSION 424-447

13.1 Introduction 425

13.2 Cyclosporine 426

13.3 Leuprolide acetate 426

13.4 DNA 426

13.5 Preparation of liposomes containing Cyclosporine A, Leuprolide acetate and DNA

13.5.1 Cyclosporine 427

13.5.2 Leuprolide acetate 428

13.5.3 DNA 430

13.6 Characterization of the liposomal formulations 431

13.7 Drug release kinetic study 432

13.8 Stability study of the prepared liposomes

13.8.1 Cyclosporine a liposomes 434

13.8.2 Leuprolide acetate liposomes 434

13.8.3 DNA liposomes 435

13.9 In vitro evaluation of CsA liposomal suspensions on mouse splenocytes 435

13.10 In vitro cytotoxicity studies of leuprolide acetate liposomes 436

13.11 In vivo biodistribution studies by radiolabeling technique 437

13.12 Nephrotoxicity studies of the cyclosporine liposomal suspensions 444

13.13 Conclusions 444

List of publication 448

List of papers presented in conferences 449