CONTENTS

Preface i

Chapter 1
General introduction to solar cells

1.1. Introduction 1
1.2. Solar cell materials 2
 1.2.1. Hydrogenated amorphous silicon 3
 1.2.2. Cadmium Telluride 5
 1.2.3. Gallium Arsenide 6
 1.2.4. Indium Phosphide 7
 1.2.5. Copper Indium diselinide 8
 1.2.6. Copper Indium Sulphide 9
 1.2.7. Copper sulphide 9
1.3. Solar cell structures 11
 1.3.1. Metal-semiconductor junction 12
 1.3.2. Homojunction 14
 1.3.3. p/i/n junction 16
 1.3.4. Heterojunction 18
1.4. Theory of semiconductor solar cell structures 20
 1.4.1. Basic theory of junction structures 20
 1.4.2. Current- voltage characteristics 27
 1.4.3. C-V characteristics 31
 1.4.4. Spectral response 32
 1.4.5. Collection function 33
1.5. Conclusion 34
References 35
Chapter 2
Preparation and characterization of thin films for solar cells

2.1. Introduction 39

2.2. Thin film deposition techniques 40

2.2.1. Sputtering 41

2.2.2. Vacuum evaporation 42

2.2.3. Molecular beam epitaxy 43

2.2.4. Chemical vapour deposition 44

2.2.5. Electrodeposition 44

2.2.6. Chemical bath deposition 45

2.2.7. Spray pyrolysis 46

2.3. Annealing process 53

2.4. Film characterization techniques 53

2.4.1. Measurement of thickness 53

2.4.2. Composition analysis 54

2.4.3. Chemical / Depth profile analysis 55

2.4.4. Structural analysis 58

2.4.5. Optical properties 59

2.4.6. Electrical properties 60

2.5. Conclusion 63

References 64

Chapter 3
Preparation and characterization of SnO₂, CdS and p-CdS:Cu thin films

Preamble 66

3.1. Part I Tin oxide 67

3.1.1. Introduction 67

3.1.2. Sample preparation 69
3.1.3. Characterization 70
3.1.4. Conclusion 75

3.2. Part II Cadmium Sulphide 76
3.2.1. Introduction 76
3.2.2. Summary of works on preparation and properties of CdS 76
3.2.3. Preparation of CdS using spray pyrolysis 84
3.2.4. Characterization 86
3.2.5. Conclusion 96

3.3. Part III p-CdS 96
3.3.1. Introduction 96
3.3.2. Review of the works on conversion of n-CdS to p-CdS 97
3.3.3. Preparation of p-CdS:Cu film 98
3.3.4. Characterization 99
3.3.5. Conclusion 109

References 110

Chapter 4
Fabrication and characterization of CdS homojunction solar cells

4.1. Introduction 116
4.2. Methods of p-n junction formation 118
4.2.1. Melt grown junction 118
4.2.2. Alloying 118
4.2.3. Solid state diffusion 119
4.2.4. Ion implantation 120
4.3. Device fabrication 122
4.3.1. Film preparation 122
4.3.2. Device optimization 122
4.3.3. Characterization 125
4.3.4 Results and discussion 127
4.3.5. Conclusion
4.4. Fabrication of a cell with improved performance
 4.4.1. Sample preparation
 4.4.2. Results and discussion
 4.4.3. Conclusion
4.5. Indium doped CdS cell with better efficiency
 4.5.1. Brief review on doping of CdS
 4.5.2. Preparation of CdS film doped with indium
 4.5.3. Characterization
 4.5.4. Cell fabrication
 4.5.5. Results and discussion
 4.5.6. Conclusion
References

Chapter 5
Summary and conclusion

5.1. Introduction
5.2. Tin oxide
5.3. n-CdS
5.4. p-CdS
5.5. CdS homojunction solar cells
5.6. Homojunction solar cells with improved performance
5.7. Cell fabrication in the indium doped CdS samples
5.8. Environmental and other related problems
References