REFERENCES
REFERENCES

Alexandrov K., Brookes P., King H.W.S., Osborne M.R. and Thompson M.H. (1976) Comparison of metabolism of benzo(a)pyrene and binding to DNA caused by rat liver nuclei and microsomes. ibid, 12, 269-277.

Delcios K.B. and Blumberg P.M. (1982) Identification of ascorbic acid as the heat stable factor for brain which inactivates the phorbol ester receptors. ibid, 42, 1227-1232.

Geacintov N.E., Yoshid H., Ibanez V. and Harvey R.G. (1982) Noncovalent binding of 7α-,8α-dihydroxy-9α,10α-epoxytetrahydro-benzo(a)pyrene to deoxyribonucleic acids and its catalytic effect on the hydrolysis of the diol epoxide to tetrol. Biochemistry, 21, 1864-1896.

Herzog J. and Farber J.L. (1976) Inhibition of rat liver RNA polymerases by action of the methylating agents dimethyl-nitrosamine in vivo and methyl methanesulfonate in vitro. ibid, 36, 1761-1770.

Hill D.L. and Shih T. (1974) Vitamin A compounds and analogues as inhibitors of mixed function oxidases that metabolise carcinogenic polycyclic hydrocarbons and other compounds. ibid, 34, 564-570.

Jackson K.G. and Jones J.K.N. (1965) The C- and O-benzyla-

Jahn C.L. and Litman G.W. (1979) Accessibility of deoxyribonucleic acid in chromatin to the covalent binding of the chemical carcinogen benzo(a)pyrene. Biochemistry, 18, 1442-1449.

Kapitulnik J., Wislocki P.G., Levin W., Yagi H., Jerina D.M. and Conney A.H. (1978a) Tumorigenicity studies with diol-epoxides of benzo(a)pyrene which indicate that (+)-trans-7β, 8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene is an ultimate carcinogen in newborn mice. Canc. Res., 38, 354-358.

King H.W.S., Osborne M.R. and Brookes P. (1979) The in vitro and in vivo reactions at the N-position of guanine of the ultimate carcinogen derived from benzo(a)pyrene. ibid, 24, 345-353.

Kodama M. and Nagata C. (1977) Binding of 6-oxybenzo(a)pyrene radical with DNA and polynucleotides. ibid, 68, 125-126.

Idem (1981b) Further characterization of the effects of 3-methylcholanthrene administration upon hepatic ribonucleic acid polymerase activities. ibid, 38, 53-73.

MacLeod M.C., Kootstra A., Mansfield B.K., Slaga T.J. and Selkirk J.K. (1981) Binding of benzo(a)pyrene derivatives to specific proteins in nuclei of intact hamster embryo cells. ibid, 41, 4080-4086.

Meehan T. and Straub K. (1979) Double-stranded DNA stereoselectively binds to benzo(a)pyrene diol epoxides. ibid, 277, 410-412.

Mengle L., Gamper H. and Bartholomew J. (1978) Base specificity in the binding of benzo(a)pyrene diol epoxide to Simian virus 40 DNA. Canc. Lett., 5, 131-137.

Osborne M.R., Beland F.A., Harvey R.G. and Brookes P. (1976a) The reaction of (+)-7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene with DNA. Int. J. Canc., 18, 362-368.

Osborne M.R., Harvey R.G. and Brookes P. (1978) The reaction of trans 7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene with DNA involves attack at the N position of guanine moieties. ibid, 29, 123-130.

Paterour M.J., Bignon J. and Jaurand M.C. (1985) In vitro transformation of rat pleural mesothelial cells by chrysotile fibres and/or benzo(a)pyrene. Carcinogenesis, 6, 523-529.

Pelling J.C. and Slaga T.J. (1982) Comparison of levels of benzo(a)pyrene diol epoxide diastereomers covalently bound in vivo to macromolecular components of the whole epidermis versus basal cell layer. Carcinogenesis, 3, 1135-1141.

Pietropaolo C. and Weinstein I.B. (1975) Binding of 3HJ-benzo(a)pyrene to natural and synthetic nucleic acids in subcellular microsomal system. ibid, 35, 2191-2198.

Shugart L. and Matsunami R. (1985) Adduct formation in hemoglobin of the newborn mouse exposed in utero to benzo(a)pyrene. Toxicology, 37, 241-245.

Soderkvist P., Poellinger L. and Gustafsson J.-A. (1986) Carcinogen-binding proteins in the rat ventral prostate: Specific and nonspecific high-affinity binding sites for benzo(a)pyrene, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzop-dioxin. ibid, 46, 651-657.

Steel W.J. (1968) Localization of deoxyribonucleic acid complementary to ribosomal ribonucleic acid and preribosomal ribonucleic acid in the nucleolus of rat liver. J. Biol. Chem., 243, 3333-3341.

