##CONTENTS

Abstract (i)
Acknowledgments (x)
Contents (vii)
List of Tables (ix)
List of Figures (x)
Glossary (xiii)

###Chapter 1 Introduction

1.1 General Background 1
1.2 Historical Development of High Frequency transformer 4
1.2.1 Low power & Ultra-high frequency applications 6
1.2.2 High power & mid-frequency Transformer applications 7
1.2.3 Mid-power & High-frequency Transformer applications 8
1.3. Switch Mode Soft Switching Converter 8
1.3.1 Resonant Converter 10
1.3.2 Load Resonant Converter 10
1.3.3 Resonant Switch Converter 13
1.3.4 Multi Resonant Switch Converter 14
1.4 Objectives of present work and Author’s contribution 15
1.5 Organization of Thesis 16

###Chapter 2 Modeling and Simulation of Pulse-Width Modulated Resonant DC/DC Converter

2.1 Introduction 17
2.2 Circuit Description 17
2.3 Principle Operation 18
2.4 Steady State Analysis 19
2.4.1 Assumptions 19
2.4.2 Output Stage 20
2.4.3 Resonant Tank Circuit 22
2.4.4 Switch Compensating Network 24
2.4.5 Modified Series Resonant Converter 25
2.5 Simulation Result 28
2.6 Conclusion 33

###Chapter 3 Modeling & Analysis of Core losses in High Frequency Transformer

3.1 Background 34
3.2 Challenges 35
3.3 Material Characterization 36
3.4 Characteristics of Conventional Ferri and Ferro Materials Ferrites 38
3.5 Amorphous Metals
3.6 Supermalloy
3.7 Loss Calculation and Verification
3.7.1 Calculation Method Survey
3.7.2 Proposed Loss Calculation Method
3.8 Conclusion

Chapter 4 Design and Development of High Frequency Transformer
4.1 Characteristic of Nenocrystalline Material
4.2.1 Loss Performance
4.2.2 B/H Curve
4.2.3 Temperature dependence Performance
4.2.4 Cut core issue
4.3 Winding loss Calculation
4.4 Litz wire optimal design
4.5 Step-up transformer design
4.6.1 Winding Capacitance Calculation
4.6.2 Simplified Energy Based Calculation Method
4.6.3 Transformer Winding Capacitance Calculation
4.7 Leakage Inductance Calculation
4.8.1 Leakage Inductance Calculation Method Survey
4.8.2 Proposed Inductance Calculation Method
4.8.3 Verification
4.9 Minimum Size design Procedure
4.10 Prototyping and Testing Result
4.11 Conclusion

Chapter 5 Development of Driver Card and Wavelet Analysis of input Signals
5.1 General Background
5.2 Development of driver card
5.3 Why wavelet
5.4 Separability Property
5.5 Signal Decomposition
5.6 Conclusion

Chapter 6 Experimental Test Setup and Results
6.1 Introduction
6.2 Testing of Full Bridge Ckt.
6.3 Short Ckt. Test
6.4 Conclusion
6.5 Conclusions and Scope for Future Work

REFERENCES
LIST OF TECHNICAL PAPERS PRESENTATION
APPENDIX