LIST OF FIGURES

Figure 1.1. Shaded relief image of the western Indian Ocean and the adjoining continents prepared based on ETOPO5 data base. Some of the prominent morphological and tectonic features are shown on the map. The area of present study is marked as rectangle (white). O B- Owen basin, MR- Murray ridge, L-B- Laxmi basin, SR-Sheba ridge, OFZ- Owen fracture zone, NSB- North Somali basin, ESB- East Somali basin, WSB- West Somali basin, CR- Carlsberg ridge, CIR- Central Indian ridge, CIB- central Indian basin, LAB- Laccadive basin, SL- Sri Lanka, MC- Mozambique channel, CI – Comoro Islands, AA – Amirante arc, SB- Seychelles bank, MB- Mascarene basin, SMP- Seychelles-Mascarene plateau complex, NB- Nazareth bank, MI- Mauritius island, RI- Reunion island, SMB- Saya de Malha bank, RTJ- Rodrigues triple junction.

Figure 1.2. Tectonic sketch map of the western Indian ocean upto 30° S redrawn after Royer et al. (1989). Dashed lines are fracture zones, continuous line with number are magnetic anomaly identifications, SWIR- South West Indian Ridge, SEIR- South East Indian Ridge. Dark marked area in India represent the Deccan Volcanic Province (DVP). The Reunion plume trail is shown as a thick line. CIB- Central Indian Basin.

Figure 1.3. Shows Major structural features in the Arabian Sea and the western continental margin of India along with selected bathymetric contours. The dots with number indicate the locations of scientific deep drilling (DSDP and ODP) sites. The various sub-basins and basement arches along the WCMI are shown from Biswas (2001). Solid triangles indicate seamounts. Details are given in the text.
Figure 2.1. Reconstruction of India, east Antarctica and Madagascar in the Gondwana period (after Kent, 1991).

Figure 2.2. Reconstruction of India and Madagascar at 1000m isobath and matching of Precambrian structural trends (after Katz and Premoli, 1979).

Figure 2.3. a) Location of the Rajmahal basalts (RB), Bunbury basalts (BB), Naturaliste Plateau (NP) and the possible extent of basalt within the Bengal basin (stippled) together with the location of the Kerguelen plume (~118Ma). The position of Marion plume is shown around 88Ma (adopted from Storey, 1995).
 b) extent of the Deccan basalt Province and contemporaneous offshore basalts before separation of Seychelles from India (~66Ma) (White and McKenzie, 1989).

Figure 2.4. Major tectonic elements in the WCMI. WCF – West Coast Fault. Thick marking parallel to the coast along the Western Ghats indicate the Western Ghat scarp.

Figure 2.5. Tectonic features in the Konkan-Kerala coast and the adjoining shelfal horst-graben complex in the offshore (adopted from Singh and Lal, 1993).

Figure 2.6. The reconstruction of India and Madagascar proposed by Talwani and Reif (1998) considering sea-floor spreading anomalies in the Laxmi basin identified by Bhattacharya et al. (1994). A new rotation pole between anomaly 28 and 34 times has been used that ameliorate the space problem in the Mascarene basin.

Figure 2.7. Plate reconstruction of Seychelles microplate (SEY) with reference to the Indian plate (IND). This reconstruction assumes eastern basin as underlain by continental crust. AFR- African plate, OFZ- Owen fracture zone, MB- Mascarene basin, CIB-
central Indian basin, NB- Nazareth bank, SM- Saya de Malha Bank. L R - Laxmi ridge. Thick dashed line in the right diagram encircle the Deccan Large Igneous Province (after Todal and Eldholm, 1998).

Figure 3.1. Map showing the location of DSS profiles in the western shield margin. Also shown are the location of refraction and wide-angle seismic reflection stations in the eastern Arabian Sea considered in the present study (adopted from Naini and Talwani, 1982). The DSS profiles are 1. Kuppam-Palani, 2. Kavali-Udipi, 3. Guhagar-Chorochi, 4. Kelsi-Loni, 5. Mehmadabad-Billimora, 6. Mehmadabad-Dharimanna, 7. Navibandar-Amreli. Details are discussed in the text.

Figure 3.2. Shows velocity-depth profiles plotted for (a) Western basin (b) Laxmi basin in the eastern Arabian Sea. The seismic refraction data given by Naini and Talwani (1982) have been utilised for this purpose. Details are discussed in the text.

Figure 3.3. Shows velocity-depth profiles plotted for (a) Laxmi ridge (b) Chagos-Laccadive ridge based on refraction data of Naini and Talwani (1982).

Figure 3.4. The crustal cross-section along Kavali-Udipi profile obtained from DSS data (after Kaila et al., 1979).

Figure 3.5. The crustal section along Koyna I (Guhagar-Chorochi) profile (after Kaila et al., 1981a; Kaila, 1982).

Figure 3.6. The crustal section along Koyna II (Kelsi-Loni) profile (after Kaila et al., 1981a).

Figure 3.7. The N-S crustal section along Mehmadabad-Billimora profile in the Cambay basin (after Kaila et al., 1981b).
Figure 3.8. The N-S crustal section along north Cambay and Sanchor basins from Mehmadabad to Dharimanna showing deeper structure (after Kaila et al., 1990).

Figure 3.9. Crustal section along Navibander-Amreli profile in the Saurashtra Peninsula (after Kaila et al., 1988).

Figure 3.10. Crustal sections showing velocity layering along (a) Kuppam-Bommidi (b) Kolathur-Palani DSS transects across the Southern Granulite Terrain (after Reddy et al., 2002).

Figure 3.11. Shows the crustal P-wave velocity models for different DSS profiles along the western Indian shield region considered in the present study.

Figure 3.12. P-wave velocity models for the lithosphere below the west coast in the Deccan volcanic Province. The velocity model given by Gaur et al. (1989) is based on travel-time residuals of earthquakes and by Krishna et al. (1991) is based on synthetic seismogram modeling of Koyna DSS profiles.

Figure 3.13. Histograms of density estimates for major rock types in the southern Granulite Terrain (after Kurian et al., 1999).

Figure 4.1. Tectonic and structural trend map of the eastern Arabian Sea and the adjoining West Coast of India. Tectonic and structural details for the western Indian shield and the offshore areas are adopted from Biswas (1982, 1987) and Subrahmanyam et al. (1995). Lines with numbers in the Arabian Sea are magnetic anomaly identifications from Chaubey et al. (1995) and Miles et al.(1998). Dashed lines indicate fracture zones. Filled circles in the offshore areas show locations of seismic refraction stations from Francis and Shor (1966) and Naini and Talwani (1982). $L_1 - L_4$ are magnetic lineations in Laxmi basin from Bhattacharya et al. (1994). Thick lines with numbers encircled along the West Coast show the location of seven Deep Seismic Sounding

Figure 4.2. Generalised geology showing various crustal blocks in the western Indian shield region. Dots are epicenters of major earthquakes listed in Mahadevan (1995). The available focal mechanism solutions of events compiled from 1. 1967 Koyna (Chandra, 1977); 2. 1980 Koyna (Rastogi, 1992); 3. 1983 Bhatsa (Rastogi, 1992); 4. 1986 Valsad (Rastogi, 1992); 5. 1970 Broach (Arora, 1970) are also shown. Trap thickness contours are adopted from Kaila (1988).

Figure 4.3. Gravity anomaly map of the eastern Arabian Sea and adjacent western Indian shield region. The contours shown are based on Bouguer anomalies (NGRI, 1978) on land and free – air anomalies (GEOSAT) in offshore areas (contour interval : 10 mgal). Data sources are cited in the text. The gravity traverses AA' through DD' shown in figure follow ship tracks in offshore areas. Wherever necessary, along profiles, ship track data have been extended in both shelf and deep sea areas by GEOSAT and ETOPO5 data. Details are discussed in the text.

Figure 4.4. Crustal seismic sections deciphering the main crustal units along regional gravity traverse (profiles AA') across the western margin considered in the present study. All available seismic information on crustal velocities, sediment and trap thickness and Moho information have been projected onto these sections. The continuous lines denote actual seismic information, while dashed lines indicate gaps in the seismic data. Thick hyphens on basement layer indicate control points obtained from published basement maps. Values in bracket refer to seismic
velocities, while bold numbers indicate crustal densities. Details are discussed in the text.

Figure 4.5. Crustal seismic section deciphering the main crustal units along profile BB' across the WCMI. Other details are as given in Figure 4.4.

Figure 4.6. Crustal seismic section deciphering the main crustal units along profile CC' across the WCMI. Details are given in Figure 4.4.

Figure 4.7. Crustal seismic section deciphering the main crustal units along profile DD' across the WCMI. Details are given in Figure 4.4.

Figure 4.8. Profile AA' and the two-dimensional gravity model across the SW continental margin of India. The numbers with short bars refer to seismic velocities from refraction stations and the values in bracket refer to inferred densities as discussed in the text. Hatched region indicate underplated material of density 3.0 g/cm³ below the Laccadive ridge. SGT-Southern Granulite Terrain.

Figure 4.9. Profile BB' and the two-dimensional gravity model across the central West Coast of India. CCR-Central Cratonic Region. The notations are the same as in Fig.4.8.

Figure 4.10. Profile CC' and the two-dimensional gravity model across the northwest coast of India within the Deccan Volcanic Province. Note the dark shaded region for the Deccan traps. The hatched region indicates the high density material in the lower crust and is seen between West Coast and the Laxmi ridge. See text for more details. DVP – Deccan Volcanic Province.

Figure 4.11. Profile DD' and the two dimensional gravity model across the northwest coast of India within the Deccan Volcanic Province. The dark shaded region represent the trap below which Mesozoic sediments are present. The notations and other
details are as given in Fig.6 and 8. SCB. – Saurashtra Continental Block. Figure 4.8 and 4.10.

Figure 5.1. Shaded relief map of the southwestern shield and the adjoining offshore area. Prominent structural features are marked on the map. The present study area is marked as a square. Major faults continuing into offshore are from Kolla and Coumes (1990), Biswas (1987). T-Tertiary boundary.

Figure 5.2. Morphotectonic map of the southwestern shield adjacent to the Kerala basin. The major/minor faults shown on the map are from Narula et al. (2000). The location of several moderate earthquakes in the region are shown. Details are discussed in the text.

Figure 5.3. Map showing the distribution of 28 gravity base stations established in central and south Kerala region in the present study.

Figure 5.4. Sketches showing location of five permanent base stations (nos. 1-5) established in the present study.

Figure 5.5. Sketches showing location of five permanent base stations. (nos. 6-10)

Figure 5.6. Sketches showing location of five permanent base stations. (nos. 11-15)

Figure 5.7. Sketches showing location of five permanent base stations. (nos. 16-20)

Figure 5.8. Sketches showing location of five permanent base stations. (nos. 21-25)

Figure 5.9. Sketches showing location of three permanent base stations. (nos. 26-28). The legend describing above the base station data is given.
Figure 5.10. Histogram showing the number of base ties against dynamic drift during base establishment.

Figure 5.11. Map showing the distribution of gravity stations in the coastal Kerala and the adjoining shield area collected in the present study and also from NGRI (1981). Geology of the area is also shown.

Figure 5.12. Gravity anomaly map of the Kerala basin and the surrounding area. Bouguer anomalies (contour interval : 5mGal) in the onshore and free air anomalies (contour interval : 5mGal) in the offshore are shown. The thick lines indicate the location of four profiles (1-4) considered in the present study for gravity modeling. Tvm – Trivandrum. The present day shelf and Miocene shelf edge has been indicated as dashed line in the offshore.

Figure 5.13. Contours showing sediment thickness in the Kerala basin region. Details are discussed in the text.

Figure 5.14. Gravity derived crustal models along four profiles (1-4) across the southwestern margin of India in the Kerala basin region. A. P – Alleppey platform; P.R – Pratap ridge; CFZ – Chagos Fracture Zone. Details are discussed in the text.