List of Figures

Fig. 1.1: A schematic diagram showing various morphological components of an ocean-ocean plate subduction zone.

Fig. 1.2: Map showing northeastern Indian Ocean with major geological and tectonic features.

Fig. 1.3: A schematic cross-sectional profile of the Andaman Subduction Zone (along A-B in Fig 1.2).

Fig. 1.4: A schematic diagram showing tectono-sedimentary events of Andaman Subduction Zone in different time periods.

Fig. 1.5: Bathymetric map of the Andaman Sea showing the islands, continents, seaways and prominent ocean-bottom ridges/highs and basins.

Fig. 2.1: Map of the northeastern Indian Ocean showing major geological and tectonic features.

Fig. 2.2: Stratigraphic litholog showing different rock units exposed on the Andaman Islands.

Fig. 2.3: Field photographs of various formations of the Mithkhari Group.

Fig. 2.4: Field photographs showing formations of the Andaman Flysch Group, Archipelago Group and exposed coral reefs.

Fig. 2.5: Field photographs showing uplifted coral bed; mangrove swamp deposits; Narcondam Island volcanics; volcanic deposits of the Barren Island Volcano.

Fig. 2.6: The geological maps of the Andaman archipelago; North Andamans; Middle Andamans and South Andamans.

Fig. 2.7: Map of the northeastern Indian Ocean showing the locations of Andaman Islands, Barren Island and the studied core SK-234-60 in the Andaman Sea.

Fig. 2.8: Photograph and litholog of the core showing volcanic ash layers in normal ocean sediments.

Fig. 2.9: Typical calibration curves for various major element oxides generated on XRF using multiple international rock standards.

Fig. 2.10: Typical calibration curves for different trace elements generated on ICP-MS using various dilutions of BHVO-2.

Fig. 3.1: Map of Southeast Asia showing major tectonic features and eruptive centres including the Barren Island Volcano and other volcanoes of the Indonesian Arc.

Fig. 3.2: Field photographs showing pyroclastic sandstones of Namunagarh Grit Formation and tuff in the Archipelago Group.

Fig. 3.3: Litholog of core SK-234-60 showing ash layers (AL-1 to 7) with calibrated AMS 14C ages.
Fig. 3.4: Depth versus age plot for the studied core.

Fig. 3.5: Backscattered X-ray images of lithic fragments and mineral grains from the ash layers of the studied core.

Fig. 3.6: Classification of feldspars and pyroxenes found in the ash layers of the core.

Fig. 3.7: Plot of ε_{Nd} versus $^{87}Sr/^{86}Sr$ for the ash layers in the core, ash deposits on Barren Island and volcanics from some major volcanoes of Indonesia.

Fig. 3.8: SiO_2 vs. K_2O and Al_2O_3 vs. TiO_2 cross plots diagram showing the compositions of the marine ash-layers in the core SK-234-60.

Fig. 3.9: Figure showing ash cloud from 2010 eruption of Barren Island Volcano and map of Barren Island.

Fig. 3.10: Total Alkalis-Silica (TAS) classification for glass matrix from lithic fragments for ash layers in the core SK-234-60.

Fig. 3.11: Various major element oxides vs. MgO plots for glass matrix of lithic fragments from the ash layers in the core SK-234-60.

Fig. 4.1: Schematic map showing the potential source regions for sediments deposited in the Andaman forearc basin during the Paleogene.

Fig. 4.2: Photomicrographs of thin sections of the Mithakhari Group.

Fig. 4.3: Photomicrographs of thin section of the Andaman Flysch Group and the Archipelago Group.

Fig. 4.4: Major element oxide versus SiO_2 for samples from the Mithakhari and the Andaman Flysch Groups.

Fig. 4.5: Primitive Mantle (PM) normalized multi element spidergrams (a&b) and chondrite normalized REE patterns (c&d) for the Mithakhari Group and the Andaman Flysch Group rocks.

Fig. 4.6: Stacked histograms of $^{87}Sr/^{86}Sr$ and $\varepsilon_{Nd} (0)$ distributions in the sedimentary rocks of the Andaman Islands.

Fig. 4.7: Stacked histogram showing frequency distributions of T_D ages for the sedimentary sequences of the Andaman Islands.

Fig. 4.8: A-CN-K diagram with the Chemical Index of Alteration (CIA) for the Andaman sedimentary rock samples.

Fig. 4.9: Plot of Th/Sc versus Zr/Sc for Andaman Island samples.

Fig. 4.10: K_2O/Na_2O versus SiO_2 and La-Th-Sc discrimination diagram for sediments of the Mithakhari Group and the Andaman Flysch Group.

Fig. 4.11: La/Th and Th/Yb variations in sandstones and shales from the Mithakhari Group and the Andaman Flysch Group.
Fig. 4.12: Plots of $E_m(0)$ ranges and $E_m(0)$ versus $^{87}\text{Sr}/^{86}\text{Sr}$ observed in the Mithakhari Group and the Andaman Flysch Group.

Fig. 4.13: Schematic maps showing the Paleogene configuration of the Indian Plate and other tectonic blocks of SE Asia at 50 Ma and 30 Ma.

Fig. 4.14: Map showing (sediment) source regions and major rivers of Myanmar.

Fig. 4.15: Map of the Andaman Sea showing bathymetry and location of sediment cores and directions of monsoon currents.

Fig. 4.16: Primitive mantle (PM) normalized multi element spidergrams for the sediments in the core.

Fig. 4.17: Chondrite normalized REE patterns for the sediments in the core.

Fig. 4.18: Histograms showing frequency distributions of $^{87}\text{Sr}/^{86}\text{Sr}$, (b) E_m and T_{dm} ages for siliciclastic sediment layers in the core SK-234-60.

Fig. 4.19: A-CN-K diagram with the Chemical Index of Alteration (CIA) for core sediments.

Fig. 4.20: Plot of Th/U versus Th for the core sediment samples.

Fig. 4.21: Plot of E_m versus $^{87}\text{Sr}/^{86}\text{Sr}$ for sediments from core.

Fig. 4.22: Plot of E_m vs. $^{87}\text{Sr}/^{86}\text{Sr}$ of sediments from our core compared with model curves of a three components mixing.

Fig. 4.23: Depth profiles of Sr-Nd isotopic compositions, trace element ratios and CIA values of sediments in core.

Fig. 4.24: Temporal variations of Sr and Nd isotopic compositions of sediments in core SK-234-60 compared with other cores from the Andaman Sea.

Fig. 4.25: Present-day N-S bathymetric profile of Andaman and Nicobar ridge and the coastlines around the Andaman Sea during the LGM.

Fig. 5.1: Map of the Andaman Islands showing locations of study areas and map showing known historic large magnitude earthquakes in the Andaman region.

Fig. 5.2: Photographs showing submerged forest and uplifted beach with dead coral reefs.

Fig. 5.3: Elevation profiles of coral terraces showing sample locations and calibrated radiocarbon ages.

Fig. 5.4: Photographs of the studied terraces.

Fig. 5.5: Stacked histogram of number of uplift and subsidence events as a function of time and relative probability density plot of the same events.